首页> 外文会议>AIAA SciTech forum >Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models
【24h】

Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

机译:火焰/进展变量模型火箭筒高压燃烧的数值研究

获取原文
获取外文期刊封面目录资料

摘要

The present paper deals with the numerical study of high pressure H2/LO2 combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations (propellant handling, infrastructure and procedures) and increase flexibility. Starting from this background, the current work provides a model for the numerical simulation of high-pressure turbulent combustion employing detailed chemistry description, embedded in a Reynolds averaged Navier-Stokes equations solver with a Low Reynolds number κ - ω turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined with a Reynolds Averaged Navier-Stokes equation Solver (RANS). In the FPV model, all of the thermo-chemical quantities are evaluated by evolving the mixture fraction Z and a progress variable C. When using a turbulence model in conjunction with FPV model, a probability density function (PDF) is required to evaluate statistical averages (e.g., Favre average) of chemical quantities. The choice of such PDF must be a compromise between computational costs and accuracy level. State-of-the-art FPV models are built presuming the functional shape of the joint PDF of Z and C in order to evaluate Favre-averages of thermodynamic quantities. The model here proposed evaluates the most probable joint distribution of Z and C without any assumption on their behavior with the Statistically Most Likely Distribution (SMLD) framework. This provides a more general model in the context of FPV approach.
机译:本文涉及高压H2 / LO2燃烧对推进系统的数值研究。目前的研究努力通过持续的利益实现了低成本,可靠的空间,最近,通过对能够减少到目的地时间的超声波运输系统的兴趣来实现。此外,燃烧在高压下被假定为一个关键的问题,以达到更好的推进性能,并降低对环境的影响,只要中的氢与烃,减少与地面行动的费用(抛射剂处理,基础设施和程序)并提高灵活性。从该背景开始,目前的工作为采用详细化学描述的高压湍流燃烧的数值模拟提供了一种模型,嵌入在雷诺平均的Navier-Stokes方程求解器中,具有低雷诺数κYκY湍流模型。用于研究这种燃烧现象的模型是标准爆震 - 变量(FPV)湍流燃烧模型的延伸,与Reynolds平均的Navier-Stokes等式求解器(RAN)相结合。在FPV模型中,通过演化混合级分Z和进度变量C来评估所有热化学量。当使用与FPV模型结合使用湍流模型时,需要概率密度函数(PDF)来评估统计平均值(例如,平均水平)化学量。这些PDF的选择必须是计算成本和准确度之间的折衷。建立最先进的FPV模型,建立了Z和C的关节PDF的功能形状,以评估热力学量的Favre平均值。这里的模型提出了评估Z和C最可能的关节分布,而不是在统计上最可能的分布(SMLD)框架的行为上没有任何假设。这在FPV方法的背景下提供了更常规的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号