首页> 外文会议>ICONE21 >SOBOL' SENSITIVITY ANALYSIS USING A NEURAL NETWORK MODEL OF A LB-LOCA IN THE ZION NUCLEAR POWER PLANT WITH CATHARE-2 V2.5 CODE
【24h】

SOBOL' SENSITIVITY ANALYSIS USING A NEURAL NETWORK MODEL OF A LB-LOCA IN THE ZION NUCLEAR POWER PLANT WITH CATHARE-2 V2.5 CODE

机译:Sobol'敏感性分析使用Cathiare-2 V2.5代码中锡安核电站LB-LOCA神经网络模型的敏感性分析

获取原文

摘要

In nuclear safety, the Best-Estimate (BE) codes may be used in safety demonstration and licensing, provided that uncertainties are added to the relevant output parameters before comparing them with the acceptance criteria. The uncertainty of output parameters, which comes mainly from the lack of knowledge of the input parameters, is evaluated by estimating the 95% percentile with a high degree of confidence. IRSN, technical support of the French Safety Authority, developed a method of uncertainty propagation. This method has been tested with the BE code used is CATHARE-2 V2.5 in order to evaluate the Peak Cladding Temperature (PCT) of the fuel during a Large Break Loss Of Coolant Accident (LB-LOCA) event, starting from a large number of input parameters. A sensitivity analysis is needed in order to limit the number of input parameters and to quantify the influence of each one on the response variability of the numerical model. Generally, the Global Sensitivity Analysis (GSA) is done with linear correlation coefficients. This paper presents a new approach to perform a more accurate GSA to determine and to classify the main uncertain parameters: the Sobol methodology. The GSA requires simulating many sets of parameters to propagate uncertainties correctly, which makes of it a time-consuming approach. Therefore, it is natural to replace the complex computer code by an approximate mathematical model, called response surface or surrogate model. We have tested Artificial Neural Network (ANN) methodology for its construction and the Sobol' methodology for the GSA. The paper presents a numerical application of the previously described methodology on the ZION reactor, a Westinghouse 4-loop PWR, which has been retained for the BEMUSE international problem [8]. The output is the first maximum PCT of the fuel which depends on 54 input parameters. This application outlined that the methodology could be applied to high-dimensional complex problems.
机译:在核安全性中,可以在安全示范和许可中使用最佳估计(是)代码,条件是在将不确定性添加到相关的输出参数之前,在将它们与验收标准进行比较之前。产出参数的不确定性主要来自输入参数缺乏了解,通过估计95%百分位,具有高度置信度。 IRSN,法国安全管理局的技术支持,制定了一种不确定的传播方法。该方法已经通过使用的代码进行了测试,该方法是Cathare-2 V2.5,以评估燃料的峰值包层温度(PCT)在大型休息事故(LB-LOCA)事件的大型损失期间,从大型开始输入参数的数量。需要一个灵敏度分析,以限制输入参数的数量并量化每一个对数值模型的响应变异性的影响。通常,全局敏感性分析(GSA)以线性相关系数完成。本文提出了一种新的方法来执行更准确的GSA以确定和分类主要不确定参数:Sobol方法。 GSA需要模拟许多参数,以正确传播不确定性,这使得其成为耗时的方法。因此,通过近似数学模型,称为响应表面或代理模型来替换复杂的计算机代码是自然的。我们已经测试了人工神经网络(ANN)的建筑和SOBOL'方法论为GSA。本文介绍了锡安反应器的先前描述的方法的数值应用,这是一个被保留的ZION反应器的ZION反应器,该方法已经保留了Bemuse International问题[8]。输出是燃料的第一个最大PCT,这取决于54输入参数。本申请概述了该方法可以应用于高维复杂问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号