首页> 外文会议>AIAA non-deterministic approaches conference >Evaluation of Model Validation Techniques in the Presence of Aleatory and Epistemic Input Uncertainties
【24h】

Evaluation of Model Validation Techniques in the Presence of Aleatory and Epistemic Input Uncertainties

机译:在存在杀虫和认知意外不确定性存在下模型验证技术的评价

获取原文
获取外文期刊封面目录资料

摘要

Model validation is the assessment of the "correctness" of a given model relative to experimental data. The results of a model validation study can be used to quantify the model form uncertainty, to select between different models, or to improve the model (i.e., through calibration or model updating). The process of model validation is complicated by the fact that both the simulation and experimental outcomes include significant uncertainty, which can come in the form of aleatory (random) uncertainties, epistemic (lack-of-knowledge) uncertainties, and bias errors. The application of Probability Bounds Analysis for treating mixed (i.e., containing both aleatory and epistemic) input uncertainties results in a family of cumulative distribution functions (CDFs) of the simulation outcomes, which is referred to as a "probability box" or "p-box." The fact that a family of CDFs, as opposed to a single CDF, is required to characterize the outcomes complicates the implementation of model validation techniques. In this paper, we will examine the following approaches to model validation and assess their ability to handle problems with mixed uncertainties: 1) the area validation metric, 2) a modified area validation metric with a factor of safety, 3) a modified area validation metric with confidence intervals, 4) the standard validation uncertainty, and 5) the difference in simulation and experimental means. To provide a rigorous assessment of these model validation techniques, we employ the recently developed Method of Manufactured Universes (MMU), where "true values in nature" are constructed by the analyst to reflect the behavior of a physical reality of interest. Here, MMU is applied to the compressible turbulent flow over a NACA 0012 airfoil, where the "true" values are constructed using turbulent computational fluid dynamics simulations while the "model" employs simplified lift and drag estimates based on thin airfoil theory and empirical lift and drag correlations. Preliminary results suggest that the modified area validation metric implementations provide more conservative estimates of the model form uncertainty than the area validation metric for mean values, with the confidence-interval implementation also returning smaller uncertainty ratios.
机译:模型验证是评估给定模型的“正确性”相对于实验数据。模型验证研究的结果可用于量化模型形式不确定性,以在不同的型号之间进行选择,或改善模型(即,通过校准或模型更新)。模型验证的过程变得复杂于模拟和实验结果包括显着的不确定性,这可以以梯级(随机)的不确定性,认识(知识缺乏)的不确定性以及偏差错误来实现。概率抑制分析用于治疗混合(即,含有杀菌和杀菌和认识)的不确定性的应用导致模拟结果的累积分布函数(CDF)的家族,其被称为“概率框”或“P-盒子。”一个事实是,与单一CDF相反的CDF系列是表征成果所需的事实使模型验证技术的实施复杂化。在本文中,我们将研究以下方法来模拟验证,并评估它们处理混合不确定性问题的能力:1)区域验证度量,2)修改因子的修改区域验证度量,3)修改区域验证度量置信间隔,4)标准验证不确定性,以及5)模拟和实验手段的差异。为了提供对这些模型验证技术的严格评估,我们采用最近开发的制造宇宙(MMU)的方法,其中分析师构建了“自然界中的真正价值”,以反映其感兴趣的物理现实的行为。这里,MMU应用于NACA 0012翼型的可压缩湍流,其中“真实”值采用湍流计算流体动力学模拟构造,而“型号”采用简化的升力和基于薄翼型理论和经验升力的阻力估计拖动相关性。初步结果表明,修改区域验证度量实现提供了比平均值的面积验证度量的模型形式的更保守的估计,其置信间隔实施也返回较小的不确定性比率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号