首页> 外文会议>International energy conversion engineering conference >Novel Materials, Processing and Device Technologies for Space Exploration with Potential Dual-Use Applications
【24h】

Novel Materials, Processing and Device Technologies for Space Exploration with Potential Dual-Use Applications

机译:具有潜在两用应用的空间勘探的新型材料,加工和设备技术

获取原文

摘要

We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual-use or terrestrial applications.
机译:我们突出了纳米材料较低温度加工的广泛努力的结果,新颖的能量转换方法和环境崎岖的设备。通过新(前体)化学使溶液加工铜铟硫钙型半导体和多壁碳纳米管的多壁碳纳米管能够实现。在导电铟锡氧化铟锡的低温下在溶液中生长了金属掺杂的光伏电池的氧化锌(ZnO)纳米结构组分。 ZnO纳米棒阵列可以采用模板化,用各种半导体和金属纳米颗粒装饰。利用ZnO在更广泛地定义的能量转换义为光催化剂中,不需要的有机废料可能是潜在的重叠。描述了用于产生太阳能电力和燃料的光电化学电池中使用的纳米电极架构中的电荷载体动力学的当前努力。目的是开发氧化物纳米线基电极架构,其表现出改善的电荷分离,电荷收集并允许有效的光吸收。对电极的电荷载流子传输和重组性能的研究将有助于了解纳米瓦架构如何改善染料敏化太阳能电池的电极性能。纳米材料可以包含在许多先进的更高性能(即质量特定功率)光伏阵列中。描述了沉积4H-碳化硅的先进技术。从提高这种有希望的材料的性能的角度来讨论使用新的前体,高级处理和过程研究,包括建模,以实现太阳能电动推进的技术。这些技术对各种航空航天应用的潜在影响是突出的。最后,给出了具有用于两用或地面应用的潜在旋转的技术。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号