首页> 外文会议>International High-Level Radioactive Waste Management Conference >Engineered Barrier Material Interactions at Elevated Temperatures: Bentonite-Metal Interactions Under Elevated Temperature Conditions
【24h】

Engineered Barrier Material Interactions at Elevated Temperatures: Bentonite-Metal Interactions Under Elevated Temperature Conditions

机译:升高温度下的工程屏障材料相互作用:升高温度条件下膨润土 - 金属相互作用

获取原文

摘要

The development of deep repository concepts in the USA is evaluating generic options for disposal of heat-generating nuclear spent nuclear fuel (SNF) waste for a suite of host rock media (clay rock, granite, salt). Large waste canister designs (e.g., dual purpose canisters or DPC's) are currently being considered to accommodate many SNF assemblies. Large amounts of SNF in the waste packages will produce high thermal loads generating temperatures in excess of 200 °C for long periods of time. For a bentonite backfilled repository concept, prolonged exposure to high temperatures will induce chemical reactions in the engineered barrier system (EBS), particularly at barrier interfaces. Our focus is on experimental investigations and the application of thermodynamic modeling to evaluate clay-zeolite phase equilibria as a function of temperature and fluid chemistry. Experimental work on barrier material interactions under hydrothermal conditions (150 - 300 °C, 15-16 MPa) has elucidated mineral phase changes in Wyoming (Colony mine) bentonite in the presence of steel phases. Glassy material in bentonite is replaced by analcime-wairakite phases, and through apparent clinoptilolite recrystallization. The initial increase in dissolved silica leads to authigenic quartz formation. Such mineral assemblage suggests an initially silica-rich environment (analcime, clinoptilolite) moving towards Si-depleted conditions. Analcime-wairakite compositions suggest a well-defined solid-solution between these Na and Ca end-members. Smectite clay in these experiments is stable with Fe-saponite and chlorite growth co-existing with binary/ternary sulfides at steel interfaces. Little or no illite was observed in the reaction products which could be tied to silica oversaturation and low K in the system. The thermodynamic analysis is used to evaluate thermodynamic data and develop phase diagrams to describe stability field relations of secondary mineral phase occurrences. This analysis allows for delineation of potential reaction pathways in bentonite clay degradation and interactions with metallic phases. One example of this is the important role of dissolved silica plus other phase components to the formation of alteration mineralogy observed in these interactions. All these investigations are key to the assessment of thermally-induced degradation zones in the EBS during the thermal period and their effect on barrier performance in the safety assessment.
机译:美国深度储存库概念的发展正在评估用于处理发热核花费核燃料(SNF)废物的通用选项(粘土岩,花岗岩,盐)。目前正在考虑大型废物罐设计(例如,双目的罐或DPC)以适应许多SNF组件。废物包装中的大量SNF将产生高热负荷,长时间产生超过200°C的温度。对于Bentonite回填储存库概念,长时间暴露于高温将诱导工程屏障系统(EBS)中的化学反应,特别是在屏障界面处。我们的重点是实验研究和热力学建模的应用评价粘土 - 沸石相平衡作为温度和流体化学的函数。在水热条件下的屏障材料(150-300℃,15-16MPa)下的屏障材料相互作用在钢相存在下阐明了Wyoming(菌落矿)膨润土的矿物相变。膨润土中的玻璃状物质由Angcime-Wairakite阶段代替,并通过明显的Clinopholegite重结晶。溶解二氧化硅的初始增加导致Authigenic石英形成。这种矿物组合均表明最初的富含二氧化硅的环境(分析,ClinoPtilolite)向Si耗尽的条件进行移动。 Analcime-Wairakite组合物表明这些Na和Ca末端构件之间的明确定义的固体溶液。这些实验中的蒙脱石粘土与Fe-Saponite和亚氯酸盐生长在钢界面上存在二元/三元硫化物。在反应产物中观察到伊利他素很少或没有伊尔石可以与系统中的二氧化硅过饱和和低钾相关。热力学分析用于评估热力学数据和开发相图以描述二次矿物相位的稳定性场关系。该分析允许在膨润土粘土劣化和与金属相的相互作用中描绘潜在的反应途径。其中的一个例子是溶解的二氧化硅加上其他相组分在这些相互作用中观察到的改变矿物的形成中的重要作用。所有这些调查都是在热时期期间评估EBS中热诱导的降解区的关键及其对安全评估中对屏障性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号