首页> 外文会议>ASME Bioengineering Conference >EXPERIMENTAL AND NUMERICAL STUDY OF ASCENDING AORTA HEMODYNAMICS THROUGH 3D PARTICLE TRACKING VELOCIMETRY AND COMPUTATIONAL FLUID DYNAMICS
【24h】

EXPERIMENTAL AND NUMERICAL STUDY OF ASCENDING AORTA HEMODYNAMICS THROUGH 3D PARTICLE TRACKING VELOCIMETRY AND COMPUTATIONAL FLUID DYNAMICS

机译:通过3D粒子跟踪速度和计算流体动力学升压主动脉血流动力学的实验与数值研究

获取原文

摘要

The complex hemodynamics observed in the human aorta make this district a site of election for an in depth investigation of the relationship between fluid structures, transport and pathophysiology. In recent years, the coupling of imaging techniques and computational fluid dynamics (CFD) has been applied to study aortic hemodynamics, because of the possibility to obtain highly resolved blood flow patterns in more and more realistic and fully personalized flow simulations [1]. However, the combination of imaging techniques and computational methods requires some assumptions that might influence the predicted hemodynamic scenario. Thus, computational modeling requires experimental cross-validation. Recently, 4D phase contrast MRI (PCMRI) has been applied in vivo and in vitro to access the velocity field in aorta [2] and to validate numerical results [3]. However, PCMRI usually requires long acquisition times and suffers from low spatial and temporal resolution and a low signal-to-noise ratio. Anemometric techniques have been also applied for in vitro characterization of the fluid dynamics in aortic phantoms. Among them, 3D Particle Tracking Velocimetry (PTV), an optical technique based on imaging of flow tracers successfully used to obtain Lagrangian velocity fields in a wide range of complex and turbulent flows [4], has been very recently applied to characterize fluid structures in the ascending aorta [5]. In this study, the 3D, pulsatile flow in an anatomically realistic rigid phantom of human ascending aorta (AAo) is investigated experimentally and computationally. The feasibility of unsteady velocity measurements by 3D PTV in a realistic AAo geometry is demonstrated, and the in vitro measured data are used as conditions at boundaries in high-resolution CFD simulations. The numerical solution is then cross-validated by PTV experiments. The validation of the numerical results allows to complement the in vitro measured data with reliable information, for instance on the distribution of the blood friction forces at the luminal surface of the vessel, the direct measure of which is still challenging.
机译:观察到人类主动脉的复杂血流动力学使该地区成为一个深入调查流体结构,运输和病理生理学之间关系的选举部门。近年来,已施加成像技术和计算流体动力学(CFD)的耦合来研究主动脉血流动力学,因为可以在越来越真实和完全个性化的流模拟中获得高度分辨的血流模式[1]。然而,成像技术和计算方法的组合需要一些可能影响预测的血液动力学场景的假设。因此,计算建模需要实验交叉验证。最近,4D相位对比度MRI(PCMRI)已被应用于体内和体外,以进入主动脉[2]中的速度场并验证数值结果[3]。然而,PCMRI通常需要长时间的获取时间,并且存在低空间和时间分辨率和低信噪比。还施加了气体测量技术用于主动脉模型中的流体动力学的体外表征。其中3D粒子跟踪小编(PTV),基于流动示踪剂成像的光学技术成功地用于获得各种复杂和湍流流动中的拉格朗日速度场[4],最近应用于在流体结构中表征流体结构上行主动脉[5]。在本研究中,实验和计算地研究了人升性主动脉(AAO)的解剖学现实刚性幻像中的3D脉冲流。证据证明了3D PTV在逼真的AAO几何中的不稳定速度测量的可行性,并且体外测量数据用作高分辨率CFD模拟中边界的条件。然后通过PTV实验交叉验证数值溶液。数值结果的验证允许通过可靠的信息补充体外测量数据,例如在血管腔表面的血液摩擦力的分布上,其直接测量仍然具有挑战性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号