首页> 外文会议>ASME Bioengineering Conference >Design of an External Fixator and Motion Application System for Use in an In Vivo Fracture Study
【24h】

Design of an External Fixator and Motion Application System for Use in an In Vivo Fracture Study

机译:用于体内骨折研究中使用的外固定器和运动应用系统的设计

获取原文
获取外文期刊封面目录资料

摘要

In the United States, there are approximately 1 million fractures annually [1]. These fractures can be treated successfully with the use of casts or internal fixation (i.e. screws, bone plates, or intramedullary rods). However, for approximately 1 out of 20 people with a fracture, these treatments are not successful and result in either a malunion or a non-union. A malunion or a non-union reduces the ability of the bone to withstand the loads it is intended to take. This can cause pain and suffering for the patient. Clinically, non-unions can be treated using mechanical stimulation via an external fixator. Current treatments and the literature suggest that the mechanical environment of a healing fracture callus can influence tissue differentiation, perhaps even stimulate healing [2,3,4,5,6,7]. This leads to the overarching question, what is the precise relationship between the local mechanical environment of a fracture and patterns of bone repair? In order to answer this question, one must be able to control and measure the amount of motion or force applied to the fracture so as to properly relate the healing patterns with a particular stimulus. The aforementioned studies have attempted to control motion using various means, but none have simultaneously measured and controlled the amount of motion and force. Nor have any reported in vivo values of fracture callus stiffness. The aim of this work was to develop and validate an external fixator and motion application system that could be used to apply controlled and measurable motion and force to a healing fracture callus in a mouse model. The data will be used to calculate the callus stiffness throughout the healing period during the in vivo studies and non-invasively assess healing.
机译:在美国,每年有大约100万骨折[1]。这些裂缝可以用铸造或内固定(即螺钉,骨板或髓内杆)成功处理。然而,对于20名骨折的20人中约1,这些治疗不成功并导致痣或非unun。痣或非union降低了骨骼承受载荷的能力。这可能会导致患者疼痛和痛苦。临床上,可以通过外固定器使用机械​​刺激来处理非工会。目前的治疗和文献表明,愈合骨折愈伤组织的机械环境可能影响组织分化,也许甚至刺激愈合[2,3,4,5,6,7]。这导致了总体问题,局部机械环境之间的骨折和骨骼修复模式之间的确切关系是什么?为了回答这个问题,必须能够控制和测量施加到骨折的运动量或力量,以便适当地将愈合模式与特定的刺激相提并论。上述研究已经尝试使用各种方法控制运动,但没有同时测量和控制运动量和力。在骨折愈伤组织刚度的体内据报道也没有报道。这项工作的目的是开发和验证外部固定器和运动应用系统,可用于在小鼠模型中对愈合骨折愈伤组织应用于控制和可测量的运动和力。在体内研究期间,数据将用于计算整个治疗期间的愈伤组织刚度,并进行非侵入性评估愈合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号