首页> 外文会议>Institute of Nuclear Materials Management >QUANTIFYING THE PASSIVE GAMMA SIGNAL FROM SPENT NUCLEAR FUEL IN SUPPORT OF DETERMINING THE PLUTONIUM CONTENT IN SPENT NUCLEAR FUEL WITH NONDESTRUCTIVE ASSAY
【24h】

QUANTIFYING THE PASSIVE GAMMA SIGNAL FROM SPENT NUCLEAR FUEL IN SUPPORT OF DETERMINING THE PLUTONIUM CONTENT IN SPENT NUCLEAR FUEL WITH NONDESTRUCTIVE ASSAY

机译:从废核燃料中量化无源伽马信号,以支持与非破坏性测定的核燃料中的钚含量

获取原文

摘要

The objective of safeguarding nuclear material is to deter diversions of significant quantities of nuclear materials by timely monitoring and detection. There are a variety of motivations for quantifying plutonium in spent fuel (SF), by means of nondestructive assay (NDA), in order to meet this goal. These motivations include the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguard nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from SF; however, no single NDA technique can, in isolation, quantify elemental plutonium in SF. A study has been undertaken to determine the best integrated combination of 13 NDA techniques for characterizing Pu mass in spent fuel. This paper focuses on the development of a passive gamma measurement system in support the spent fuel assay system. Gamma ray detection for fresh nuclear fuel focuses on gamma ray emissions that directly coincide with the actinides of interest to the assay. For example, the 186-keV gamma ray is generally used for 235U assay and the 384-keV complex is generally used for assaying plutonium. In spent nuclear fuel, these signatures cannot be detected as the Compton continuum created from the fission products dominates the signal in this energy range. For SF, the measured gamma signatures from key fission products (~(134)Cs, ~(137)Cs, ~(154)Eu) are used to ascertain burnup, cooling time, and fissile content information. In this paper the Monte Carlo modeling set-up for a passive gamma spent fuel assay system will be described. The set-up of the system includes a germanium detector and an ion chamber, and will be used to gain passive gamma information that will be integrated into a system for determining Pu in SF. The passive gamma signal will be determined from a library of –100 assemblies that have been created to examine the capability of all 13 NDA techniques. Presented in this paper is a description of the passive gamma monitoring instrument, explanation of the work completed thus far involving the source set up methodology and the design optimization process, details of key fission product ratios of interest, limitations and key strengths of the measurement technique, and considerations for integrating this technique with other NDA techniques in order to develop a complete spent fuel assay strategy .
机译:保护核材料的目标是通过及时监测和检测来阻止大量核材料的转移。通过非破坏性测定(NDA)来定量燃料(SF)中的钚,以满足这一目标存在各种动力。这些动机包括:加强国际原子能机构的能力维护核设施,托运人/接收者差异,在重新处理设施和储存库中的繁荣信用。存在许多NDA技术,用于测量SF的签名;然而,在SF中,没有单一NDA技术可以分离地量化元素钚。已经进行了一项研究,以确定用于在花费燃料中表征PU质量的13个NDA技术的最佳综合组合。本文侧重于支持燃料测定系统的无源伽马测量系统的开发。新鲜核燃料的Gamma射线检测侧重于伽马射线排放,直接与感兴趣的静脉曲化物吻合。例如,186-keVγ射线通常用于235U测定,并且384-KeV络合物通常用于测定钚。在核燃料中,由于从裂变产品创建的康普顿连续体会,无法检测到这些签名主导了该能量范围内的信号。对于SF,来自关键裂变产物的测量伽马签名(〜(134)Cs,〜(137)Cs,〜(154)欧盟)用于确定燃烧,冷却时间和裂变内容信息。在本文中,将描述用于无源伽马花费燃料测定系统的蒙特卡罗建模设施。系统的设置包括锗检测器和离子室,并且将用于获得将被集成到用于确定PU的系统中的被动伽马信息。被动伽马信号将从已经创建的-100个装配库中确定以检查所有13个NDA技术的能力。本文介绍是无源伽马监测仪器的描述,迄今为止涉及源建立方法和设计优化过程的介绍的工作的说明,细节的关键裂变产品比率,限制和测量技术的关键优势以及将该技术与其他NDA技术集成的考虑,以便开发完整的花费燃料测定策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号