首页> 外文会议>MFPT Meeting >FAULT DETECTION AND FAILURE PREDICTION FOR AUTOMATED FLARE TOOLING
【24h】

FAULT DETECTION AND FAILURE PREDICTION FOR AUTOMATED FLARE TOOLING

机译:自动闪光工具的故障检测和故障预测

获取原文

摘要

The implementation of automated tooling into the flare manufacturing processes has significantly improved the ergonomics, decreased the processing time of key flare components, and significantly increased the number of safeguards benefiting operators. Automated flare tooling sets the standard for improvement in operator performance, efficiency, and exceeding customer product expectations. This case study reports the results of several quantitative and qualitative risk analyses that were designed for fault detection and failure prediction. Hazards analyses for each automated tool have assessed the level of risk quantitatively and qualitatively for each potential failure mode in order to determine an appropriate hazard classification. The use of a Failure Modes and Effects Analysis (FMEA) for each of the automated tools in the design and qualification phases analyzes all component failure modes and the impact to the safety of personnel and equipment integrity. This report highlights critical failure modes from the hazards analysis' FMEA that assessed the most critical initiation hazards. Each potential failure mode was successful in predicting failures and ensuring that the designed process control systems adequately detected and safeguarded the tooling for all potential faults involved with the process. The primary purpose of the FMEA is to identify scenarios involved with each process that generates potential energy sources required for initiation of the flare. The development of recommendations and additional safeguards from unacceptable hazards identified in the FMEA lower the hazard severity and frequency of all potential failure modes. This report demonstrates the success of automated tooling in increasing flare production, decreasing the number of ergonomic challenges, reducing the amount of down-time for each tooling, and reducing the number of product quality escapements.
机译:自动化工具进入耀斑制造过程的实施显着改善了人体工程学,降低了关键耀斑组件的处理时间,并显着增加了受益算子的保障率。自动发光工具设置了操作员性能,效率和超出客户产品期望的改进标准。本案例研究报告了若干定量和定性风险分析的结果,该分析被设计用于故障检测和故障预测。对于每个潜在的故障模式,每个自动化工具的危险分析已经评估了每种潜在故障模式的量化和定性,以确定适当的危险分类。设计和素质化阶段中每个自动化工具的使用失效模式和效果分析(FMEA)分析了所有组件故障模式以及对人员和设备完整性的影响。本报告突出了来自危险分析的危险失败模式,评估最关键的启动危险。每个潜在的故障模式都成功地预测失败,并确保设计的过程控制系统充分检测到并保护了该过程所涉及的所有潜在故障的工具。 FMEA的主要目的是识别与每个过程所涉及的场景,从而产生发起耀斑所需的潜在能源。从FMEA中鉴定的不可接受的危险的建议和额外保障的制定降低了所有潜在故障模式的危害严重程度和频率。本报告展示了自动化工具在增加耀斑生产中的成功,降低了符合人体工程学挑战的数量,减少了每个工具的停机量,并降低了产品质量擒源的数量。

著录项

  • 来源
    《MFPT Meeting》|2008年||共10页
  • 会议地点
  • 作者

    Cannon Neslen;

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类 TH17-53;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号