首页> 外文会议>AIAA Aerospace Sciences Meeting >Reducing Edney Type-IV Cowl Shock-On-Lip Heating Via Leading Edge Geometry Optimization
【24h】

Reducing Edney Type-IV Cowl Shock-On-Lip Heating Via Leading Edge Geometry Optimization

机译:通过前沿几何优化减少eDNEY-IV Type-IV COWL冲击唇部加热

获取原文

摘要

High speed vehicles incorporating ramjet/scramjet propulsion systems often employ a "shock-on-lip" condition to maximize engine mass capture. Often with this scenario, the forebody-induced shock wave impinges onto the leading edge of the engine cowl. Such an impingement can cause one or more shock-shock interactions that can produce extremely high convective heating rates to the cowl. Due to such interactions, the cowl leading edge region often experiences the greatest convective heating rates found on the vehicle. Earlier research has produced an optimized leading edge generation process applicable for high speed vehicles such as waveriders. In those efforts, Bezier Curves were employed to represent the candidate leading edge cross sectional geometries which were then optimized using a number of cost functions including: minimum peak heating, minimum total heating, minimum drag, and minimum pressure gradient. In the current work, Bezier Curve leading edges have been used in a new optimization process with the goal of reducing the heating to a ramjet/scramjet cowl leading edge by modifying the local shock-shock interaction via geometry modifications of the cowl leading edge. Since these shock-shock interactions are fundamentally an inviscid phenomenon, the Euler equations are used to evaluate candidate configurations as input to a Particle Swarm Optimization algorithm to direct the geometry optimization process. Such optimized cowl leading edge geometries have been generated at a freestream Mach number of 4.6 and have applications to hypersonic vehicles using an air-breathing propulsion system. Results from a single-shock wave based optimization process show up to an 8% reduction in peak pressure on the leading edge.
机译:结合Ramjet / Scramjet推进系统的高速车辆通常采用“冲击唇”条件来最大化发动机质量捕获。通常具有这种情况,前体引起的冲击波撞击发动机罩的前缘。这种冲击可能导致一个或多个冲击冲击相互作用,其可以产生极高的对流加热速率。由于这种相互作用,涡流领导边缘区域经常经历车辆上的最大的对流加热速率。早期的研究已经为适用于高速车辆(如Waveriders)的优化领先优化的前缘生成过程。在这些努力中,使用Bezier曲线来表示候选前沿横截面几何,然后使用多种成本函数优化,包括:最小峰加热,最小总加热,最小阻力和最小压力梯度。在当前的工作中,Bezier曲线前缘已在新的优化过程中使用,其目的是通过通过COWL前沿的几何修改来修改局部冲击冲击相互作用来将加热降低到Ramjet / Scramjet Cowl前沿。由于这些冲击冲击相互作用基本上是一种没有粘性现象,因此euler方程用于评估候选配置作为输入到粒子群优化算法的输入,以引导几何优化过程。这种优化的COWL前缘几何形状已经在FreeStream Mach数为4.6中产生,并使用空气呼吸推进系统将应用到超音速车辆。单冲击波优化过程的结果显示出在前缘上的峰值压力降低至8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号