首页> 外文会议>AIAA Aerospace Sciences Meeting >Mechanism of Plasma-Assisted Ignition for H_2 and C1-C5 Hydrocarbons
【24h】

Mechanism of Plasma-Assisted Ignition for H_2 and C1-C5 Hydrocarbons

机译:血浆辅助点火机制对H_2和C1-C5烃的辅助点火

获取原文

摘要

There are several mechanisms that affect a gas when using a discharge to initiate combustion or stabilize the flame. There are two thermal mechanisms: 1) gas heating due to energy release causes the acceleration of chemical reactions; 2) inhomogeneous gas heating generates flow perturbations, promoting turbulence and mixing. Non-thermal mechanisms include 3) the ionic wind effect (the momentum transfer from the electric field to the gas due to space charge); 4) ions and electrons drift in the electric field can cause additional fluxes of active radicals in gradient flows; 5) excitation, dissociation and ionization of the gas by e-impact leads to the production of nonequilibrium radicals and changes the kinetic mechanisms of ignition and combustion. These mechanisms combined together, or separately, can provide additional control of combustion, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude GTE relighting, detonation initiation in pulsed detonation engines, distributed ignition control in HCCI engines, and so on. The operation efficiency of a scramjet depends critically on the efficiency and completeness of the combustion process. Namely, a low efficiency of combustion restricts the upper boundary of the flight envelope. Plasma-assisted combustion is one of the very interesting possibilities for stabilizing ignition at high altitudes, and low dynamic pressures and temperatures. In addition, plasma-assisted ignition can stabilize the ultra-fast combustion required for M > 10 operations. Thus, the ultimate goal of using plasma technologies in hypersonic applications is the extension of an engine's stability region to low dynamic pressures (0.2-0.05 arm) and high Mach numbers (M = 10-20). The major difference between common combustion and plasma-assisted combustion is the extremely nonequilibrium excitation of the gas in the discharge. The external electric field accelerates electrons, and the energy exchange between electrons and the translational degrees of freedom of molecules is very slow because of the huge differences in masses. As a result of this feature, electron impact can transfer energy to the internal degrees of freedom of molecules only. If the rate of internal energy relaxation is not very high, the population distribution of the excited states of the molecules will differ greatly from the initial Boltzmann energy distribution. The overpopulation of excited states causes an increase in the system reactivity and facilitates ignition and flame propagation. From this point of view, the most important questions regarding plasma-stimulated chemistry concern the distribution of the discharge energy through the different degrees of freedom of molecules, the rate of system relaxation (thermalization) and the response of a chemically active system to this nonequilibrium excitation. Precise control of the direction of energy deposition in the plasma is possible for a relatively short time period when the multiplication of electrons (above the breakdown threshold) or recombination (below the threshold) do not have enough time to change the electron concentration and plasma conductivity significantly. When the plasma conductivity is not very high, it is possible to maintain a desired value of E/n in the inter-electrode gap. This approach, together in combination with a short high-voltage pulse and constant bias, allows for the selective and extremely nonequilibrium excitation of the gas. The duration of the critical high-voltage pulse depends on the gas parameters (density, composition), but for the practically important range of parameters, it is restricted to few nanoseconds. The main mechanisms of nonequilibrium gas excitation and their influence on the ignition and combustion were briefly discussed. Rotational excitation, vibrational excitation, electronic excitation, dissociation by electron impact and ionization were all analyzed, as well as the ways in which the
机译:当使用放电以引发燃烧或稳定火焰时,存在几种机制。有两种热机制:1)由于能量释放引起的气体加热导致加速化学反应; 2)不均匀气体加热产生流动扰动,促进湍流和混合。非热机构包括3)离子风效应(由于空间电荷导致的来自电场的电影量); 4)离子和电子漂移在电场中漂移会导致梯度流动中的额外的有源基团; 5)通过电子撞击产生气体的激发,解离和电离导致非Quiribiums的产生,并改变点火和燃烧的动力学机制。这些机制组合在一起或单独的机制可以提供额外的燃烧控制,这对于超贫火焰,高速流动,高空GTE致密的冷低压条件,脉冲爆炸发动机中的爆炸发起,分布式点火在HCCI引擎中控制,等等。 Scramjet的运行效率主要取决于燃烧过程的效率和完整性。即,低燃烧效率限制了飞行包络的上边界。等离子体辅助燃烧是稳定在高海拔的点火的非常有趣的可能性之一,以及低动态压力和温度。此外,等离子体辅助点火可以稳定M> 10操作所需的超快速燃烧。因此,在超音速应用中使用等离子体技术的最终目标是发动机的稳定区域到低动态压力(0.2-0.05臂)和高马赫数(M = 10-20)。常见燃烧和等离子体辅助燃烧之间的主要区别是放电中气体的极其不醌激发。外部电场加速电子,电子与分子的平移自由度之间的能量交换非常慢,因为质量巨大差异。由于该特征,电子撞击可以仅将能量传递到内部分子的内部自由度。如果内部能量松弛的速率不是很高,则来自初始Boltzmann能量分布的分子的兴奋状态的人口分布将大大差异。激发态的过度缩进导致系统反应性的增加,并有助于点火和火焰传播。从这个角度来看,关于等离子体刺激的化学性的最重要的问题涉及通过不同分子自由度的放电能量的分布,系统弛豫(热化)和化学活性系统对该非Quigibrium的反应来分布励磁。当电子(在击穿阈值上方)或重组(低于阈值下方)不具有足够的时间以改变电子浓度和等离子体导电性时,可以精确控制等离子体中的等离子体中的相对较短的时间段。显着地。当等离子体导电性不是很高时,可以在电极间隙中保持所需的E / N值。这种方法与短的高压脉冲和恒定偏压结合在一起,允许选择性和极其不足的气体激发。临界高压脉冲的持续时间取决于气体参数(密度,组成),但对于实际上重要的参数范围,它限于少数纳秒。简要讨论了非Quilibim气体激发的主要机制及其对点火和燃烧的影响。旋转激励,振动激发,电子激发,通过电子撞击和电离的解离,以及途径

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号