首页> 外文会议>International Symposium on Space Flight Dynamics >SPACEBORNE AUTONOMOUS AND GROUND BASED RELATIVE ORBIT CONTROL FOR THE TERRASAR-X/TANDEM-X FORMATION
【24h】

SPACEBORNE AUTONOMOUS AND GROUND BASED RELATIVE ORBIT CONTROL FOR THE TERRASAR-X/TANDEM-X FORMATION

机译:用于Terrasar-X / TANDEM-X形成的星载自主和地面的相对轨道控制

获取原文

摘要

TerraSAR-X (TSX) and TanDEM-X (TDX) are two advanced synthetic aperture radar (SAR) satellites flying in formation. SAR interferometry allows a high resolution imaging of the Earth by processing SAR images obtained from two slightly different orbits. TSX operates as a repeat-pass interferometer in the first phase of its lifetime and will be supplemented after two years by TDX in order to produce digital elevation models (DEM) with unprecedented accuracy. Such a flying formation makes indeed possible a simultaneous interferometric data acquisition characterized by highly flexible baselines with range of variations between a few hundreds meters and several kilometers [1]. TSX has been successfully launched on the 15th of June, 2007. TDX is expected to be launched on the 31st of May, 2009. A safe and robust maintenance of the formation is based on the concept of relative eccentricity/inclination (e/i) vector separation whose efficiency has already been demonstrated during the Gravity Recovery and Climate Experiment (GRACE) [2]. Here, the satellite relative motion is parameterized by mean of relative orbit elements and the key idea is to align the relative eccentricity and inclination vectors to minimize the hazard of a collision. Previous studies have already shown the pertinence of this concept and have described the way of controlling the formation using an impulsive deterministic control law [3]. Despite the completely different relative orbit control requirements, the same approach can be applied to the TSX/TDX formation. The task of TDX is to maintain the close formation configuration by actively controlling its relative motion with respect to TSX, the leader of the formation. TDX must replicate the absolute orbit keeping maneuvers executed by TSX and also compensate the natural deviation of the relative e/i vectors. In fact the relative orbital elements of the formation tend to drift because of the secular non-keplerian perturbations acting on both satellites. The goal of the ground segment is thus to regularly correct this configuration by performing small orbit correction maneuvers on TDX. The ground station contacts are limited due to the geographic position of the station and the costs for contact time. Only with a polar ground station a contact visibility is possible every orbit for LEO satellites. TSX and TDX use only the Weilheim ground station (in the southern part of Germany) during routine operations. This station allows two scheduled contact per day for the nominal orbit configuration, meaning that the satellite conditions can be checked with an interval of 12 hours. While this limitation is usually not critical for single satellite operations, the visibility constraints drive the achievable orbit control accuracy for a LEO formation if a ground based approach is chosen. Along-track position uncertainties and maneuver execution errors affect the relative motion and can be compensated only after a ground station contact.
机译:Terrasar-x(TSX)和Tandem-X(TDX)是两种高级合成孔径雷达(SAR)卫星在形成中飞行。 SAR干涉测量法通过处理从两个略微不同的轨道获得的SAR图像来实现地球的高分辨率成像。 TSX在其寿命的第一阶段中作为重复通道干涉仪操作,并且在TDX两年后将补充,以便以前所未有的准确度生产数字高度模型(DEM)。这种飞行形成确实可以同时的干涉式数据采集,其特征在于高度柔性基线,在几百米和几公里之间的变化范围内[1]。 TSX已成功于2007年6月15日成功推出.TDX预计将于2009年5月31日推出。对该地层的安全和稳健维护是基于相对偏心/倾斜度的概念(E / i)在重力回收和气候实验(Grace)期间已经证明了效率的矢量分离[2]。这里,卫星相对运动通过相对轨道元件的平均值来参数化,并且关键思想是对准相对偏心和倾斜矢量以最小化碰撞的危害。以前的研究已经表明了这一概念的意见,并描述了使用脉冲确定性控制法控制形成的方法[3]。尽管具有完全不同的相对轨道控制要求,但可以应用于TSX / TDX的形成。 TDX的任务是通过主动控制相对于TSX的相对运动,形成的领导者来维持近距离形成配置。 TDX必须复制由TSX执行的绝对轨道操作,并且还补偿相对E / I向量的自然偏差。实际上,由于在两颗卫星上作用的世俗非克服扰动,形成的相对轨道元素往往漂移。因此,地面段的目标是通过在TDX上执行小轨道校正手动来定期纠正这种配置。由于站的地理位置和接触时间的成本,地面站触点受到限制。只有极地地站,只有LEO卫星的每个轨道都有一个接触可见度。在日常操作期间,TSX和TDX仅使用Weilheim地面站(德国南部)。该站允许每天两个预定的联系,用于标称轨道配置,这意味着可以在12小时的间隔检查卫星条件。虽然这种限制通常对单卫星操作不重要,但如果选择基于接地的方法,则可见性约束驱动可实现的轨道控制精度为LEO形成。沿着轨道位置不确定性和机动执行误差会影响相对运动,并且只能在地面站接触后补偿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号