【24h】

Seismic Design of Communications Towers

机译:通信塔的地震设计

获取原文

摘要

Beginning in 2006, the tower industry will begin using the new revision of the Structural Standard for Antenna Supporting Structures and Antennas, TIA/EIA-222-G. Revision G incorporates several significant changes from previous revisions. It moves form allowable stress design to limit state design, and incorporates the wind and ice provisions of ASCE 7. However, the most significant change is the addition of seismic provisions for communication towers. This is the first time the Standard has seismic loading requirements for tower in regions of high seismicity. Because towers are special structures, current seismic provisions in building codes do not always adequately predict their behavior in earthquakes. Revision G provides methods that better estimate the performance of communication structures subjected to ground motion. Revision G provides: methods for determining 1) when earthquake loads need to be considered in the design of communication towers, 2) the fundamental period of various classes of towers, 3) seismic forces. In general, communication structures can be classed as self-supporting and guyed. For design purposes, the response of self-supporting towers can be predicted using linear elastic methods of analysis. Pole structures fall under this category. However, guyed towers are intrinsically nonlinear. Despite their nonlinear behavior, studies at the University of Windsor and McGill University show that the equivalent lateral force method provides an adequate estimate of the seismic forces in guyed towers when using the equations for the fundamental frequency defined in Revision G. As a precaution, the writers of Revision G put a limit on the use of the equivalent lateral force method on guyed towers with mass or stiffness irregularities taller than 450 m (1500 ft) and when any guy radius exceeds 300 m (1000 ft). Under these conditions, the Revision G requires that a time history analysis be performed. Furthermore, when any guy radius exceeds 300 m, out-of-phase motion of the anchor points needs to be considered. This paper presents a nonlinear analysis of a 2000 ft guyed tower with and without mass irregularities. The analysis considers both in-phase and out-of-phase base motion for comparison. The results of the nonlinear analyses are compared to the results obtained using the equivalent lateral force method.
机译:从2006年开始,塔行业将开始使用新修订天线的结构标准,TIA / EIA-222-G。修订G包含以前修订的几种重大变化。它移动形成允许的应力设计来限制状态设计,并包含归档的风和冰条件7.但是,最显着的变化是增加沟通塔的地震规定。这是第一次标准在高地震性地区的塔架上具有地震载荷要求。由于塔是特殊的结构,建筑码中的当前地震规定并不总是充分预测其地震中的行为。修订G提供了更好地估计经受地面运动的通信结构性能的方法。修订版G提供:确定1)确定在通信塔的设计中需要考虑地震载荷,2)各类塔,3)地震力的基本时期。通常,通信结构可以被归类为自我支持和欺骗。出于设计目的,可以使用线性弹性分析方法预测自支撑塔的响应。杆子结构属于此类别。然而,盖帽是本质上非线性的。尽管他们的非线性行为,温莎大学和麦吉尔大学的研究表明,当使用修订G中定义的基本频率的方程时,相当于横向力法在塔架中的地震力量提供了足够的估计。作为预防措施,这修订版G的作者对具有高于450米(1500英尺)的质量或刚度不规则的人的使用等效侧向力法的使用限制,并且任何Guy半径超过300米(1000英尺)时。在这些条件下,修订G要求执行时间历史分析。此外,当任何Guy半径超过300μm时,需要考虑锚点的超相运动。本文介绍了一个2000英尺的Guyed Tower的非线性分析,没有大规模违规。分析考虑了相互作用和超阶段的基础运动进行比较。将非线性分析的结果与使用等效横向力法获得的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号