首页> 外文会议>Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics >Quantitative photoacoustic image reconstruction for molecular imaging
【24h】

Quantitative photoacoustic image reconstruction for molecular imaging

机译:分子成像的定量光声图像重建

获取原文

摘要

Biomedical photoacoustic imaging produces a map of the initial acoustic pressure distribution, or absorbed energy density, in tissue following a short laser pulse. Quantitative photoacoustic imaging (QPI) takes the reconstruction process one stage further to produce a map of the tissue optical coefficients. This has two important advantages. Firstly, it removes the distorting effect of the internal light distribution on image contrast. Secondly, by obtaining images at multiple wavelengths, it enables standard spectroscopic techniques to be used to quantify the concentrations of specific chromophores, for instance, oxy and deoxy haemoglobin for the measurement of blood oxygenation - applying such techniques directly to "conventionally" reconstructed absorbed energy maps is problematic due to the spectroscopic 'spatial crosstalk' effects between different tissue chromophores. As well as naturally-occurring chromophores, dye-labelled molecular markers can be used to tag specific molecules, such as cell surface receptors, enzymes or pharmaceutical agents. In QPI, a diffusion-based finite element model of light transport in scattering media, with δ-Eddington scattering coefficients, is fitted to the absorbed energy distribution to estimate the optical coefficient maps. The approach described here uses a recursive algorithm and converges quickly on the absorption coefficient distribution, when the scattering is known. By adding an area of known absorption, an unknown constant scattering coefficient may also be recovered. With optical coefficient maps estimated in this way, QPI has the potential to be a powerful tool for quantifying the concentration of molecular markers in photoacoustic molecular imaging.
机译:生物医学光声成像在短的激光脉冲之后的组织中产生初始声压分布或吸收能量密度的地图。定量光声成像(QPI)将重建过程进一步阶段进一步以产生组织光学系数的地图。这有两个重要的优势。首先,它去除内部光分布对图像对比度的扭曲效应。其次,通过以多个波长获得图像,它使得能够用于量化特异性发色团的浓度,例如用于测量血氧的氧化和脱氧血红蛋白 - 将这种技术直接施加到“常规”重建的吸收能量由于不同组织发色团之间的光谱“空间串扰”效应,地图是有问题的。除了天然存在的发色团中,染料标记的分子标记可用于标记特定分子,例如细胞表面受体,酶或药剂。在QPI中,散射介质中的光传输的扩散的有限元模型,具有Δ-Eddington散射系数,适用于吸收的能量分布以估计光学系数图。这里描述的方法使用递归算法并在散射已知时快速收敛于吸收系数分布。通过添加已知吸收的区域,也可以恢复未知的恒定散射系数。通过以这种方式估计光学系数图,QPI具有潜能的能力,用于量化光声分子成像中分子标记的浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号