首页> 外文会议>International Conference on Nuclear Engineering >BUBBLE BEHAVIOR IN TWO-PHASE FLOW NATURAL CIRCULATION EMPLOYED IN THE PRIMARY SYSTEM ON THE INTEGRATED MODULAR WATER REACTOR (IMR), ANALYZED BY α-FLOW CODE
【24h】

BUBBLE BEHAVIOR IN TWO-PHASE FLOW NATURAL CIRCULATION EMPLOYED IN THE PRIMARY SYSTEM ON THE INTEGRATED MODULAR WATER REACTOR (IMR), ANALYZED BY α-FLOW CODE

机译:通过α-流代码分析,在初级系统中使用的两相流动自然循环中的泡沫行为,通过α - 流量分析

获取原文

摘要

The Integrated Modular Water Reactor (IMR) is one of the advanced small-sized reactors. Its rector vessel features the primary cooling system employing two-phase flow natural circulation of light water coolant and built-in-vessel type of steam generators. This primary cooling system, named the Hybrid Heat Transport System (HHTS), enables competitive economy and high-level safety by elimination of piping of large diameter, pumps and pressurizers. The steam generators are two kinds; one (SGV) is located in the vapor region in the reactor vessel to condense vapor and control the primary system pressure, the other (SGL) is submerged in the two-phase mixture region to remove heat from the mixture and control the core inlet temperature down to subcooled state. The SGV and SGL totally extract 1000MW of thermal power from the core. The design target of averaged void fraction in the two-phase upward flow is around 20% to 25%, which is corresponding to bubbly flow. The performance of the HHTS is subject to bubble behavior and void distribution in the circulation. This study deals with bubble behavior investigation for the riser-downcomer sections through analyses by the commercial code, α-FLOW. Free surface vapor separation from the two-phase flow, which is important to determine required capacities of the SGV and the SGL, is also estimated, and vapor separation on the steam-water simulation test with the loop facility of small diameter piping is additionally investigated to clarify its predominant factors of the separation. The analyses show two-phase flow distributions dependent to the given conditions at the riser inlet, which are corresponding to core cycle burn-ups. The analyses estimate around 30% of the generated vapor to separate up to the vapor region in the case of 16GWd/t of cycle burn-up without the internal structures, while the steam-water simulation test data arranged by the induced velocity parameter suggest that predominant factors of the vapor separation are the system pressure and liquid velocity horizontally flowing towards the downcomer section.
机译:集成的模块化水反应器(IMR)是先进的小型反应堆之一。其校长船舶采用初级冷却系统采用轻水冷液和内置蒸汽发生器的两相流自然循环。这种命名为混合热传输系统(HHT)的主冷却系统,通过消除大直径,泵和压力机的管道来实现竞争性经济和高级安全性。蒸汽发生器是两种;一个(SGV)位于反应器容器中的蒸汽区,以冷凝蒸汽并控制初级系统压力,将另一个(SGL)浸没在两相混合区域中以除去来自混合物的热量并控制核心入口温度下降到潜水状态。 SGV和SGL完全从核心提取1000MW的热力。两相向上流动的平均空隙部分的设计目标约为20%至25%,这对应于起泡流动。 HHT的性能受到循环中的气泡行为和空隙分布。本研究通过商业代码,α-Flow分析来处理提升者削减者部分的泡沫行为调查。从两相流的自由表面蒸汽分离,这对于确定SGV和SGL的所需容量非常重要,并且还估计了与小直径管道的环路设施的蒸汽水模拟试验的蒸汽分离澄清其分离的主要因素。分析显示依赖于立管入口处的给定条件的两相流分布,其对应于核心循环烧伤。分析估计在没有内部结构的循环烧伤的循环烧伤的情况下,估计产生的蒸汽的30%以分离到蒸汽区域,而诱导速度参数排列的蒸汽水仿真测试数据表明蒸汽分离的主要因素是水平流动朝向降液管部分的系统压力和液体速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号