首页> 外文会议>Annual International Conference on Research in Computational Molecular Biology >A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters
【24h】

A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters

机译:系统发育网络和不相容性的基本分解理论

获取原文

摘要

Phylogenetic networks are models of evolution that go beyond trees, allowing biological operations that are not consistent with tree-like evolution. One of the most important of these biological operations is recombination between two sequences (homologous chromosomes). The algorithmic problem of reconstructing a history of recombinations, or determining the minimum number of recombinations needed, has been studied in a number of papers [10,11,12,23,24,25,16, 13,14,6, 9,8,18,19,15,1]. In [9, 6,10, 8,1] we introduced and used "conflict graphsr and "incompatibility graphs" to compute lower bounds on the minimum number of recombinations needed, and to efficiently solve constrained cases of the minimization problem. In those results, the non-trivial connected components of the graphs were the key features that were used.In this paper we more fully develop the structural importance of non-trivial connected components of the incompatibility graph, to establish a fundamental decomposition theorem about phylogenetic networks. The result applies to phylogenetic networks where cycles reflect biological phenomena other than recombination, such as recurrent mutation and lateral gene transfer. The proof leads to an efficient 0(nm~2) time algorithm to find the underlying maximal tree structure defined by the decomposition, for any set of n sequences of length m each. An implementation of that algorithm is available. We also report on progress towards resolving the major open problem in this area.
机译:系统发育网络是超越树木的演化模型,允许与树状演变一致的生物学操作。这些生物学作业中最重要的一种是两种序列(同源染色体)之间的重组。重建重组史的算法问题,或确定所需的最小重组数量,已经在许多纸中研究了[10,11,12,23,24,25,16,13,14,6,9, 8,18,19,15,1]。在[9,6,10,8,1]中,我们介绍并使用“冲突Graphsr和”不相容图“,以计算所需的最小重组数量的下限,并有效地解决最小化问题的受约束病例。在这些结果中,图形的非普通连接组件是所使用的关键特征。本文更充分地发展了不相容图的非普通连接组件的结构重要性,建立了关于系统发育网络的基本分解定理。该结果适用于系统发育网络,其中循环反映了除重组以外的生物现象,例如复制突变和横向基因转移。该证明导致有效的0(nm〜2)时间算法,以找到由分解定义的底层最大树结构,用于每个长度M的N个序列。该算法的实现可用。我们还报告了解决主要开放概率的进展情况在这个领域的lem。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号