首页> 外文会议>International in situ and on-site bioremediation symposium >MULTI-PHASE EXTRACTION WELL DROP TUBE DESIGN FOR LNAPL RECOVERY AT HIGH PERMEABILITY SITES
【24h】

MULTI-PHASE EXTRACTION WELL DROP TUBE DESIGN FOR LNAPL RECOVERY AT HIGH PERMEABILITY SITES

机译:高渗透位点LNAPL回收的多相提取井滴管设计

获取原文

摘要

The design of a drop tube in a multi-phase extraction (MPE) well can have a significant impact on the effectiveness of a remediation system, especially at sites having high permeability soils. Previous research has presented methodologies for selecting drop tube diameters and slot patterns to minimize pressure losses in an MPE well (Peramaki and Granley, 2001). This research describes the practical implications of drop tube design on the removal of light non-aqueous phase liquids (LNAPL), soil vapor and ground water from an MPE recovery well installed at sites having soils with intrinsic permeabilities in excess of 10-8 cm2. Critical factors in designing a drop tube are: drop tube diameter, the elevation of the drop tube base relative to the LNAPL/water interface, the drop tube-slotting pattern and the presence or absence of a cap on the end of the drop tube. Drop tubes can be designed to produce maximum ground-water flow rates/drawdown (and the corresponding cone of depression), maximum vapor flow rates (and the corresponding vacuum radius of influence), minimum ground water recovery, and/or maximum LNAPL recovery rates. Field experiments were conducted in several wells at two active remediation sites having highly permeable soils (>4x10-7 cm2) and large areas of LNAPL. Numerous drop tube configurations were tested. Conclusions drawn from the field test results indicate that a non-slotted drop tube produces higher LNAPL recovery rates than slotted tubes and that the base of the drop tube should be set at the LNAPL/water interface for maximum sustainable LNAPL recovery (with high ground-water recovery rates). The highest ground-water recovery rates are observed with increasing drop tube submergence, while the highest soil vapor flow rates occur with decreasing drop tube submergence and/or an increase in drop tube slotting. Combining field test results with LNAPL theory, it is postulated that the optimum drop tube configuration for a highly permeable site consists of an unslotted, uncapped drop tube placed within the LNAPL layer at or slightly below the potentiometric surface of the aquifer. It is essential to thoroughly understand the finer points of drop tube design in order to purposefully induce the desired subsurface conditions at a given stage of a project. Proper management of drop tube configuration by making changes in the configuration at appropriate times will maximize remediation and lead to a more rapid clean-up at reduced life-cycle costs.
机译:落管的在多相萃取(MPE)的设计以及可对修复系统的有效性的显著影响,尤其是在具有高渗透性的土壤位点。先前的研究已经提出了方法,用于选择下降管的直径和槽图案,以尽量减少在MPE阱(Peramaki和Granley,2001)的压力损失。该研究描述了从MPE开采井安装在具有超过10-8 cm 2的固有渗透率土壤位点的去除的光非水相液体(LNAPL),土壤蒸气和地下水下降管设计的实际影响。在设计的下降管的关键因素是:下降管的直径,相对于LNAPL /水界面,所述落管-开槽图案和在下降管的端部的存在或不存在一个帽的下降管基部的正视图。降管可以被设计为产生最大的地下水流动速率/刮涂(和抑郁症的相应锥形),最大蒸气流速(以及影响相应的真空半径),最小地面水回收,和/或最大LNAPL回收率。田间试验,在几个孔中具有高渗透性的土壤两个活性补救场地(> 4x10-7平方厘米)和LNAPL的大面积进行。众多下降管配置进行了测试。从现场试验结果得出的结论表明,非开槽下降管产生较高LNAPL回收率比开槽的管和下降管的底部应在LNAPL /水界面对于最大可持续LNAPL恢复被设置(具有高地面水回收率)。最高地下水恢复率随着下降管浸没观察到的,而最高的土壤蒸气流速随下降管浸没和/或提高在下降管开槽发生。结合现场测试结果与理论LNAPL,但假定为高渗透性的网站上的最佳液滴管配置由在或稍低于含水层的电位表面放置在LNAPL层内未开槽,未封端的下降管的。吃透落管设计的细微之处,以故意诱导所需的地下条件在项目的某个阶段是至关重要的。通过在适当的时候作出的配置更改将最大限度地整治,并导致更快速的清理在降低生命周期成本下降管的配置进行适当管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号