首页> 外文会议>Conference on multiphoton microscopy in the biomedical sciences >Enabling high precision nonlinear 3-dimensional photo-processing of premeditated designs on a conventional multiphoton imaging system
【24h】

Enabling high precision nonlinear 3-dimensional photo-processing of premeditated designs on a conventional multiphoton imaging system

机译:在传统的多光子成像系统上启用高精度非线性3维光学处理的预密度设计

获取原文

摘要

There is an increasing amount of interest in functionalized microstructural, microphotonic and microelectromechanical systems (MEMS) for use in biological applications. By scanning a tightly focused ultra-short pulsed laser beam inside a wide variety of commercially available polymer systems, the flexibility of the multiphoton microscope can be extended to include routine manufacturing of micro-devices with feature sizes well below the diffraction limit. Compared with lithography, two-photon polymerization has the unique ability to additively realize designs with high resolution in three dimensions; this permits the construction of cross-linked components and structures with hollow cavities. In light of the increasing availability of multiphoton imaging systems at research facilities, femtosecond laser manufacturing becomes particularly attractive in that the modality provides a readily accessible, rapid and high-accuracy 3-D processing capability to biological investigators interested in culture scaffolds and biomimetic tissue engineering, bio-MEMS, biomicrophotonics and microfluidics applications. This manuscript overviews recent efforts towards to enabling user accessible 3-D micro-manufacturing capabilities on a conventional proprietary-based imaging system. Software which permits the off-line design of microstructures and leverages the extensibility of proprietary LCSM image acquisition software to realize designs is introduced. The requirements for multiphoton photo-disruption (ablation) are in some ways analogous to those for multiphoton polymerization. Hence, "beam-steering" also facilitates precision photo-disruption of biological tissues with 3-D resolution, and applications involving tissue microdissection and intracellular microsurgery or three-dimensionally resolved fluorescence recovery after photobleaching (FRAP) studies can benefit from this work as well.
机译:有越来越多的在生物应用功能的微观结构,微光和微机电系统(MEMS)的利息金额。通过扫描紧密聚焦的各种各样的市售聚合物系统内的超短脉冲激光束,所述多光子显微镜的灵活性可被扩展到包括微器件的常规制造特征尺寸以及低于衍射极限。与光刻技术相比,双光子聚合具有独特的能力,在三维空间高分辨率相加REALIZE设计;这允许交联部件和结构与空腔的结构。在研究设施多光子成像系统的可用性的增加的光,飞秒激​​光制造变得在模态提供了一个易于接近,快速,高精确度的3-d的处理能力,以感兴趣的培养支架和仿生组织工程生物研究者特别有吸引力的,生物MEMS,biomicrophotonics和微流体应用。此概述手稿最近的努力朝向到常规的基于专有的成像系统上实现用户可访问的3-d微制造能力。引入软件允许离线设计的微观结构,并利用专有LCSM图像采集软件的可扩展性,以实现设计。对于多光子光破坏(烧蚀)的要求是,在某些方面类似于用于多光子聚合。因此,“光束转向”也有利于生物组织的与3- d分辨率精度光破坏,并且涉及组织显微切割和细胞内显微或三维分辨荧光漂白恢复后的应用程序(FRAP)的研究可以从这个工作中获益以及。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号