首页> 外文会议>International Conference on Phenomena in Ionized Gases >Multiscale multiphysics non-empirical approach to the modeling of chemically active non-equilibrium plasmas
【24h】

Multiscale multiphysics non-empirical approach to the modeling of chemically active non-equilibrium plasmas

机译:多尺度多发性的非经验方法化学活性非平衡等离子体建模

获取原文

摘要

Recent progress in several related research areas such as first-principles electronic-structure calculations, theory of elementary processes, kinetics, as well as continuing exponential growth in computational resources enhanced by advances in massively parallel computing have opened the possibility of directly designing kinetics mechanisms to describe chemical and light emission kinetics in such complex media as non-equilibrium reacting plasmas. Indeed state of art electronic structure methods allow sufficiently accurate non-empirical calculations of electronic energies, structure, multipole momentums, transition probabilities, and other parameters of diatomic and, with certain limitation polyatomic molecules both in the ground and electronically excited states [1]. Based on this information modern elementary processes, kinetic and discharge theories and appropriate software tools available unable theoretical description both kinetic parameters and of plasma properties. This work demonstrates the capabilities of such a multiscale multiphysics approach for the prediction of the plasma composition, emission spectrum, and power of low pressure metal halide discharge. The coordinated work of the specialists in electronic structure methods, theory of elementary processes, plasma kinetics and plasma discharge physics, and computers science is illustrated by the calculations of the emission properties of the Ar-GaI_(3) and Ar-InI_(3) systems in glow discharge. The results of calculations using Chemical Workbench computational environment [2] yield the dependencies of the electron energy balance and emission efficiency on the plasma parameters. Overviews of the key advances in the electronic structure theory, theory of elementary processes, kinetic theory, which makes this work possible, are presented as well.
机译:最近在若干相关研究领域的进展,如第一原则电子结构计算,基本过程,动力学理论,以及通过大规模平行计算的进步增强的计算资源的持续指数增长已经开辟了直接设计动力学机制的可能性将这些复合介质中的化学和发光动力学描述为非平衡反应等离子体。实际上艺术电子结构方法允许足够精确的电子能量,结构,多极动量,过渡概率和硅原子的其他参数,以及在地面和电子激发状态下的某些限制多原子分子[1]。基于此信息现代的基础工艺,动力学和放电理论和可用的适当软件工具,无法理论描述动力学参数和等离子体性能。这项工作展示了这种多尺度多体性方法的能力,用于预测等离子体组成,发射光谱和低压金属卤化物放电的功率。通过计算AR-GAI_(3)和AR-INI_(3)的排放特性的计算说明了电子结构方法,基本过程,等离子体动力学和等离子体放电物理学和计算机科学的专家的协调工作。发光放电系统。使用化学工作台计算环境计算结果[2]在等离子体参数上产生电子能量平衡和发射效率的依赖性。概述了电子结构理论的主要进步,基本过程理论,动力学理论,使得这项工作成为可能。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号