首页> 外文会议>International Symposium on Microelectronics >Investigation of Rapid-Prototyping Methods for 3D Printed Power Electronic Module Development
【24h】

Investigation of Rapid-Prototyping Methods for 3D Printed Power Electronic Module Development

机译:三维印刷电力电子模块开发快速原型方法的研究

获取原文

摘要

The recent research in wide-bandgap (WBG) power electronic semiconductors has produced a wide variety of device and combinational topologies, such as HFETS, MOSHFETS, and the Cascode Pair. Each variation needs to be tested with certain package criteria (e.g. high voltage SiC devices up to 15kV, high current GaN devices up to 300A, or unprecedented high frequencies). Having a common package is costly and cannot provide an investigation of optimized performance. Hence, use of a rapid prototyping method to print power electronic packages and modules is needed. Also, the continual move to higher frequencies will require greater integration of packaging into the end application, as is presently done with point-of-load converters. The future modules will take on more functional integration, including more mechanical features, which further supports use of printed fabrication technologies. It is not reasonable to assume that a complete module can be directly printed, though most would be; some assembly is required. This paper discusses partitioning of a module process, and identifying key elements that can be combined for optimum power package production. To select the best process, or combination, for rapid-prototype printing of power modules current, Additive Manufacturing (AM) methods are evaluated, such as Stereolithography (SLA), Selective Laser sintering (SLS), and Fused Deposition Manufacturing (FDM). Several modules were fabricated to demonstrate mechanical resolutions in the packaging. A thermoplastic printer, specifically the MakerBot, which is a high end consumer 3D printer, produces packages with 100 micron resolution. The Acrylonitrile butadiene styrene (ABS) build object can have surface texture enhancement with post chemical treatment, such as an acetone vapor bath. Today, this is finding a home and proving useful in low volume rapid prototyping in small electronics companies. The ABS plastics are typically rated for <105°C applications. Another printed module to be reported uses a high-end commercial machine with <20 microns in resolution (Stratasys Objet) using standard UV curable polymers. This provides a slightly higher temperature range with greater mechanical integrity. Materials for >250°C that use both UV and thermal sintering are available, but not evaluated in this paper. Functional integration can include electrical, mechanical, and thermal appendages and sub-systems. Electrical sub-systems, such as gate drivers and sensors, can impact process partitioning, by requiring "low Power" circuit fabrication processes integrated with those for high power. This paper demonstrates a printed polymer substrate process for functional integration of a signal-circuit. Since nearly all AM processes were developed initially for mechanical systems, many processed materials have not been electrically characterized, though the basic material compositions may have suitable electrical characteristics. This paper categorizes several materials for their potential suitability for power packaging. The evaluation is based on the electrical, mechanical, and thermal parameters, along with precision, surface texture (affecting electric field contours) and process times. Cost and performance will be of main concern.
机译:最近的宽带隙(WBG)电力电子半导体的研究已经产生了各种各样的设备和组合拓扑,例如HFET,MOSHFET和Cascode对。需要使用某些封装标准(例如,高达15kV的高电压SiC器件,高达300A的高电压SiC器件或前所未有的高频)进行测试。拥有共同的包装是昂贵的,不能提供对优化性能的调查。因此,需要使用快速原型化方法来打印电力电子封装和模块。此外,持续转向较高频率将需要将包装的更大集成到最终应用中,如同装载点转换器所示。未来的模块将采用更多功能集成,包括更多机械功能,进一步支持使用印刷制造技术。假设可以直接打印完整的模块是不合理的,但大多数都是这样的;需要一些装配。本文讨论了模块过程的分区,并识别可用于最佳电源包生产的关键元素。为了选择最佳过程或组合,对于电源模块电流的快速原型打印,评估添加剂制造(AM)方法,例如立体光刻(SLA),选择性激光烧结(SLS)和熔融沉积制造(FDM)。制造了几个模块以证明包装中的机械分辨率。一个热塑性打印机,特别是作为高端消费者3D打印机的Makerbot,生产具有100微米分辨率的封装。丙烯腈丁二烯苯乙烯(ABS)构建物体可以具有表面纹理增强与化学处理后的表面纹理增强,例如丙酮蒸气浴。今天,这是在小型电子公司的低批量快速原型中寻找一个家庭和证明。 ABS塑料通常为<105°C应用。使用标准UV可固化聚合物,待报告的另一个打印模块使用具有<20微米的高端商用机器20微米。这提供了略高的温度范围,具有更大的机械完整性。使用紫外线和热烧结的250°C的材料可用,但在本文中没有评估。功能集成可包括电气,机械和热封和子系统。电气子系统,例如栅极驱动器和传感器,可以通过要求与高功率的那些集成的“低功率”电路制造工艺冲击处理分区。本文演示了一种用于信号电路的功能集成的印刷聚合物基板工艺。由于最初为机械系统开发了几乎AM过程,因此许多加工材料尚未被电表征,尽管基本材料组合物可以具有合适的电特性。本文对若干材料进行了分类,以实现其电源包装的潜在适用性。评估基于电气,机械和热参数,以及精密,表面纹理(影响电场轮廓)和工艺时间。成本和绩效将是主要关注点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号