【24h】

Verification of Emissions by Inverse Modelling

机译:逆建模验证排放

获取原文

摘要

A wide range of scientific questions regarding the green-house gases necessitate determinations of their sources and sinks at local to global scales. A powerful method for such determinations involves solution of an inverse problem in which the observed concentrations are effectively Lagrangian line integrals and the unknown sources or sinks are contained in the integrands. The inverse problem consists of calculating optimal estimates of the unknowns in the Bayesian sense using an atmospheric transport model and trace gas measurements gathered over space and time. Great care is necessary to include the effects of both measurement and transport model errors in calculating the uncertainty in the optimal estimates. These methods have recently been applied to estimations of the emissions of several greenhouse gases including the chlorofluorocarbons, hydrofluorocarbons, perfluorocarbons, methane, and nitrous oxide. For the hydrogen-containing gases these emission estimates require accurate specification of the concentrations of the hydroxyl radical which constitute their major sink. Hydroxyl radical levels can be optimally estimated in a separate problem using measurements of a few special gases whose global emissions are already very well known. We briefly review the results of studies which use Eulerian or Lagrangian transport models and Kalman filter and other optimization methods to compute emissions of non-CO_2 greenhouse gases. These emission estimates can be compared to those obtained from industry production, sales, and end-use data or from aggregation of local emissions measurements where available. The results show that the inverse approach is a powerful complement to these other methods and that it has sometimes served to illuminate important systematic errors in the industry-based estimates. At the same time, the inverse approach has its own limitations associated especially with transport model errors and/or inadequate atmospheric measurements.
机译:有关绿房气体的广泛的科学问题需要在当地到全球尺度的源和汇。这种确定的强大方法涉及逆问题的求解,其中观察到的浓度有效地是拉格朗日线积分,并且包含在整体中的未知来源或汇。逆问题包括使用大气传输模型计算贝叶斯意义上未知数的最佳估计,并在空间和时间聚集的痕量气体测量。非常小心是必要的,包括测量和运输模型误差在计算最佳估计中的不确定性时。这些方法最近应用于几种温室气体排放的估计,包括氯氟烃,氢氟烃,全氟烃,甲烷和一氧化二氮。对于含氢气体,这些排放估计需要准确地说明构成其主要水槽的羟基的浓度。可以在使用少数特殊气体的测量中最佳地在单独的问题中进行最佳估计羟基自由基水平,其全球排放已经众所周知。我们简要介绍了使用欧拉或拉格朗日运输模型和卡尔曼滤波器和其他优化方法来计算非CO_2温室气体排放的研究结果。这些排放估计可以与从工业生产,销售和最终使用数据中获得的排放估计或从可用的地方排放测量的聚集进行比较。结果表明,反向方法是对这些其他方法的强大补充,有时它有时能够在基于行业的估计中照亮重要的系统错误。同时,逆方法具有尤其与运输模型误差和/或不充分的大气测量相关的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号