首页> 外文会议>Algorithms for Synthetic Aperture Radar Imagery >The imaging algorithm for steadily flying and maneuvering big targets
【24h】

The imaging algorithm for steadily flying and maneuvering big targets

机译:稳步飞行和操纵大目标的成像算法

获取原文

摘要

Usually inverse synthetic aperture radar (ISAR) imaging is for small aircraft, with long range, moreover the coherent integration angle is small, that is the target's wavenumber spectrum support region can be regard as a rectangle, Range-Doppler(RD) algorithm or Range-Instantaneous-Doppler (RID) algorithm are employed for image reconstruction after translational motion compensation (TMC), which includes envelope alignment (such as envelope correlation algorithm, minimum entropy algorithm) and autofocus (such as single PPP algorithm, multiple PPP algorithm, PGA, weighted least square algorithm). But migration through resolution cell (MTRC) is not considered after TMC, in fact, the scatterers around the target usually take place MTRC if the size of target is large. In the paper, we first align and focus the high resolution radar target echoes according target center, then we do time scale transform in target's wavenumber domain, that is Soumekh proposed 'keystone' interpolation to compensate MTRC (which can also be realized rapidly by DFT-IFFT or SFT-IFFT in azimuth direction), after range compression (range IFFT), for steadily flying target, target image can be obtained only after azimuth compression (that is FFT in azimuth direction), for maneuvering target, time-frequency analysis must be taken for every range cell, and the existing instantaneous imaging algorithms (such as joint time-frequency distribution algorithm, Radon-Wigner algorithm) are also effective to obtain RID images. This paper gives the ISAR imaging algorithm flow diagram to obtain images from raw data of steadily flying and maneuvering big targets, and simulate data and real data prove that algorithm flow is effective.
机译:通常,逆合形孔径雷达(ISAR)成像是针对小型飞机的,而且具有长的范围,而且相干积分角度很小,即目标的波数频谱支撑区可以视为矩形,范围 - 多普勒(RD)算法或范围。 -Intantional-inppler(RID)算法用于平移运动补偿(TMC)之后的图像重建,包括包络对准(例如包络相关算法,最小熵算法)和自动对焦(例如单PPP算法,多个PPP算法,PGA ,加权最小二乘算法)。但是,在TMC之后不考虑通过分辨率单元(MTRC)迁移,实际上,如果目标的大小大,则围绕目标散射器通常会发生MTRC。在本文中,我们首先将高分辨率雷达目标回声对齐并重点关注目标中心,然后我们在目标的波数域中进行时间缩放转换,即Soumekh提出的“梯形岩”插值来补偿MTRC(也可以通过DFT快速实现在方位角方向上的-ifft或SFT-IFFT),在范围压缩(范围IFFT)之后,用于稳定飞行目标,仅在方位压缩(方位方向上的FFT)之后仅获得目标图像,用于操纵目标,时频分析必须对每个范围电池进行,并且现有的瞬时成像算法(例如关节时频分布算法,氡 - Wigner算法)也有效地获得RIV图像。本文给出了ISAR成像算法流程图,以获得从稳步飞行和机动大目标的原始数据的图像,并模拟数据和实际数据证明算法流是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号