首页> 外文会议>International Conference on Fluid Structure Interaction >A novel fluid-structure interaction model for lubricating gaps of piston machines
【24h】

A novel fluid-structure interaction model for lubricating gaps of piston machines

机译:一种用于活塞机润滑间隙的新型流体结构相互作用模型

获取原文

摘要

The lubricating gaps between movable parts in piston machines represent the main source of power loss. A deep understanding of the complex physical phenomena characterizing the complex fluid-structure interaction is crucial for improving existing design and designing new more efficient machines. The lubricating gap in these machines has to fulfill a sealing and bearing function. Therefore the prediction of the gap flow, the load carrying ability and the energy dissipation is necessary. This paper discusses the different physical phenomena and presents a new fluid-structure interaction model for the piston/cylinder gap of axial piston machines. The model considers the squeeze film effect due to the micro-motion of the piston and simultaneously the change of fluid film thickness due to the deformation of parts caused by the fluid pressure field. In addition the fluid flow is considered as non-isothermal, which requires the coupling of a heat transfer model to predict the surface temperatures as boundary conditions for the non-isothermal fluid film model. The novelty of the developed fully coupled fluid-structure interaction model is the integration of a finite element solver in the dynamic non-isothermal fluid flow model. This allows for the first time to solve the elastohydrodynamic lubrication problem in complex changing load conditions, considering the impact of thermal effects. Simulation results of the piston/cylinder interface will be compared with pressure field and temperature measurements, obtained on a special test-rig.
机译:活塞机上可动部件之间的润滑间隙代表了功率损耗的主要来源。深入了解具有复杂的流体结构相互作用的复杂物理现象对于改善现有设计和设计新的更高效的机器至关重要。这些机器中的润滑间隙必须满足密封和轴承功能。因此,需要预测间隙流动,承载能力和能量耗散。本文讨论了不同的物理现象,并为轴向活塞机的活塞/圆柱间隙提出了一种新的流体结构相互作用模型。由于活塞的微观运动,该模型认为挤压膜效果,并且同时由于流体压力场引起的部件的变形而同时改变流体膜厚度。此外,流体流量被认为是非等温,这需要传热模型的耦合以将表面温度预测为非等温膜模型的边界条件。开发的完全耦合的流体结构相互作用模型的新颖性是在动态非等温流体流动模型中的有限元求解器的整合。这允许首次解决复杂的变化负载条件中的弹性流体动力润滑问题,考虑到热效应的影响。活塞/圆柱界面的仿真结果将与在特殊试验台上获得的压力场和温度测量相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号