首页> 外文会议>International symposium on computer architecture >Re-Architecting DRAM Memory Systems with Monolithically Integrated Silicon Photonics
【24h】

Re-Architecting DRAM Memory Systems with Monolithically Integrated Silicon Photonics

机译:重新构建具有单片集成硅光子的DRAM存储器系统

获取原文

摘要

The performance of future manycore processors will only scale with the number of integrated cores if there is a corresponding increase in memory bandwidth. Projected scaling of electrical DRAM architectures appears unlikely to suffice, being constrained by processor and DRAM pin-bandwidth density and by total DRAM chip power, including off-chip signaling, cross-chip interconnect, and bank access energy. In this work, we redesign the DRAM main-memory system using a proposed monolithically integrated silicon-photonic technology and show that our photonically interconnected DRAM (PIDRAM) provides a promising solution to all of these issues. Photonics can provide high aggregate pin-bandwidth density through dense wavelength-division multiplexing. Photonic signaling provides energy-efficient communication, which we exploit to not only reduce chip-to-chip interconnect power but to also reduce cross-chip interconnect power by extending the photonic links deep into the actual PIDRAM chips. To complement these large improvements in interconnect bandwidth and power, we decrease the number of bits activated per bank to improve the energy efficiency of the PIDRAM banks themselves. Our most promising design point yields approximately a 10 x power reduction for a single-chip PIDRAM channel with similar throughput and area as a projected future electrical-only DRAM. Finally, we propose optical power guiding as a new technique that allows a single PIDRAM chip design to be used efficiently in several multi-chip configurations that provide either increased aggregate capacity or bandwidth.
机译:如果在内存带宽相应增加,将来的Manualcore处理器的性能只会使用集成核的数量。预计电气DRAM架构的缩放不太可能出众,受处理器和DRAM引脚带宽密度和总DRAM芯片功率的限制,包括片外信令,交叉芯片互连和银行进入能量。在这项工作中,我们使用提出的单片集成的硅光子技术重新设计了DRAM主存储器系统,并显示了我们的光神经互连的DRAM(PIDRAM)为所有这些问题提供了有希望的解决方案。光子学可通过致密波分复用提供高集合销带宽密度。光子信令提供节能通信,我们不仅可以减少芯片到芯片的互连功率,而且还通过将深度延伸到实际PIDRAM芯片中的光子链接来减少交叉芯片互连功率。为了补充互连带宽和功率的大大改进,我们减少了每艘激活的比特数,以提高PIDRAM银行本身的能效。我们最有希望的设计点为单芯片PIDRAM通道产生了大约10倍的功率降低,具有与未来的未来电器DRAM相似的吞吐量和区域。最后,我们提出了一种引导光功率作为一种新技术,允许在几种多芯片配置中有效地使用单个PIDRAM芯片设计,该多芯片配置提供增加的总容量或带宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号