首页> 外文会议>International Symposium on Air Breathing Engines >Turbine thermomechanical modelling during excessive axial movement and overspeed
【24h】

Turbine thermomechanical modelling during excessive axial movement and overspeed

机译:过度轴向运动和超速期间的涡轮机热机械造型

获取原文

摘要

This manuscript discusses the numerical (finite element) and analytical modelling of structural interactions between gas turbine components in case of excessive axial movement and overspeed. Excessive axial movement, which may occur after a shaft failure, results in contact between rotating and static turbine structures under high forces. These forces create friction which can act as a counter torque, potentially retarding the 'free-rotating' structures. The study is based on a shaft failure scenario of a 'three-shaft', high 'by-pass' ratio, civil 'large-fan' engine. Coupled analytical performance and friction methods are used as standalone tools to investigate the effect of rubbing between rotating and stationary structures. The method is supported by 'high-fidelity', 'three-dimensional', thermomechanical finite element simulations using LS-DYNA software. The novelty of the work reported herein lies in the development of a generalized modelling approach that can produce useful engine design guidelines to minimize the terminal speed of a free running turbine after an unlocated shaft failure. The study demonstrates the advantage of using a fast analytical formulation in a design space exploration, after verifying the analytical model against finite element simulation results. The radius and the area of a stationary seal platform in the turbine assembly are changed systematically and the design space is explored in terms of turbine acceleration, turbine dislocation rate and stationary component mass. The radius of the friction interface increases due to the increasing radius of the nozzle guide vane flow path and stationary seal platform. This increases the frictional torque generated at the interface. It was found that if the axial dislocation rate of the free running turbine wheel is high, the resulting friction torque becomes more effective as an overspeed prevention mechanism. Reduced contact area results in a higher axial dislocation rate and this condition leads to a design compromise between available friction capacity, during shaft failure contact, and seal platform structural integrity.
机译:该稿件讨论了在过度轴向运动和超速的情况下燃气轮机组件之间结构相互作用的数值(有限元)和分析建模。在轴故障之后可能发生过多的轴向运动,导致在高力下的旋转和静态涡轮机之间的接触。这些力产生摩擦,其可以充当反扭矩,可能延迟“自由旋转”结构。该研究基于“三轴”,高“旁路”比例的轴故障场景,民用“大型扇”发动机。耦合分析性能和摩擦方法用作独立工具,以研究旋转和固定结构之间摩擦的效果。使用LS-DYNA软件,通过“高保真”,“三维”,热机械有限元模拟来支持该方法。本文报道的新颖性在于在开发广义建模方法方面,可以产生有用的发动机设计指南,以最小化未升压轴故障之后的自由行驶涡轮机的末端速度。该研究展示了在验证有限元模拟结果的分析模型之后在设计空间探索中使用快速分析制剂的优点。涡轮机组件中的固定密封平台的半径和区域系统地改变,并且在涡轮机加速度,涡轮位错率和固定部件质量方面探讨了设计空间。由于喷嘴导向叶片流动路径和固定密封平台的半径增加,摩擦界面的半径增加。这增加了界面处产生的摩擦扭矩。结果发现,如果自由行驶涡轮机的轴向位错率高,则所得到的摩擦扭矩变得更有效地作为超速预防机构。降低的接触面积导致轴向位错率较高,并且该条件导致在可用摩擦能力之间的设计折衷,在轴失效接触期间,密封平台结构完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号