首页> 外文会议>International Symposium on Air Breathing Engines >Aerodynamic Performance of an Unlocated High Pressure Turbine Rotor
【24h】

Aerodynamic Performance of an Unlocated High Pressure Turbine Rotor

机译:未脱荷高压涡轮机转子的空气动力学性能

获取原文
获取外文期刊封面目录资料

摘要

The rotor sub-assembly of the high pressure turbine of a modern turbofan engine is typically free to move downstream because of the force imbalance acting on the disc and blades following an unlocated shaft failure. This downstream movement results in a change in the geometry of the rotor blade, tip seals and rim/platform seals because of the interaction of the rotor sub-assembly with the downstream vane sub-assembly. Additionally, there is a change in the leakage flow properties, which mix with the main flow because of the change in engine behaviour and secondary air system dynamics. In the present work, the changes in geometry following the downstream movement of the turbine, are obtained from a validated friction model and structural LS-DYNA simulations. Changes in leakage flow properties are obtained from a transient network source-sink secondary air system model. 3D RANS simulations are used to evaluate the aerodynamic effect from the inclusion of the leakage flows, tip seal domains, and downstream movement of the rotor for three displacement configurations i.e. 0, 10 and 15 mm, with appropriate changes in geometry and leakage flow conditions. It is observed from the results that there is a significant reduction in the expansion ratio, torque and power produced by the turbine with the downstream movement of the rotor because of changes in the flow behaviour for the different configurations. These changes in turbine performance parameters are necessary to accurately predict the terminal speed of the rotor using an engine thermodynamic model. Further, it is to be noted that such reductions in turbine rotor torque will result in a reduction of the terminal speed attained by the rotor during an unlocated shaft failure. Therefore the terminal speed of the rotor can be controlled by introducing design features that will result in the rapid rearward displacement of the turbine rotor.
机译:现代涡轮机发动机的高压涡轮机的转子子组件通常可以自由地在下游移动,因为在未递敷的轴故障之后作用在盘和叶片上作用的力不平衡。由于转子子组件与下游叶片子组件的相互作用,这种下游运动导致转子叶片,尖端密封件和边缘/平台密封的几何形状的变化。另外,由于发动机行为和二次空气系统动态的变化,存在泄漏流动性能的变化,其与主流混合。在本作本作中,从验证的摩擦模型和结构LS-DYNA模拟中获得涡轮机下游运动之后的几何形状的变化。泄漏流性能的变化是从瞬态网络源极宿第二空气系统模型获得的。 3D RAN模拟用于评估从转子的泄漏流,尖端密封域和下游运动的空气动力学效果用于三个位移配置,即0,10和15mm,具有适当的几何和泄漏流动条件的变化。从结果中观察到,由于不同配置的流动行为的变化,涡轮机的膨胀比,扭矩和由转子的下游运动产生的显着降低。需要使用发动机热力学模型精确地预测转子的端子速度所必需的这些变化。此外,应注意,涡轮机转子扭矩的这种降低将导致转子在未升温的轴故障期间通过转子获得的端子速度的降低。因此,可以通过引入将导致涡轮机转子的快速向后位移的设计特征来控制转子的末端速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号