首页> 外文会议>International Conference on Artificial Neural Networks >Spatially continuous learning systems: artificial neural networks in a bulk material continuum
【24h】

Spatially continuous learning systems: artificial neural networks in a bulk material continuum

机译:空间连续学习系统:散装材料中的人工神经网络连续

获取原文

摘要

Artificial (and biological) neural networks are usually envisioned as a collection of massively connected discrete nonlinear processors. There is a finite number of neurons and each neuron can be individually identified and occupies a certainlocation in 2D or 3D space. There is also a numerous but finite number of interconnections between neurons. A major hurdle, when attempting to build neural networks in hardware is implementing the massive number of these physical interconnections required for all but the simplest applications. As an alternative, this paper describes the physical development of trainable computational devices implemented in bulk materials as Feedforward Continuum Artificial Neural Networks (CANNs). Nonlinear neuronprocessing and connectivity are a natural result of the linear and nonlinear physical processes inherent in the bulk material in which the network is implemented. These physical processes can be externally controlled and the control mechanism can betrained by an error backpropagation method based on gradient descent optimization. When trained, the physical systems can function as a feedforward artificial neural networks. An example is presented below where a feedforward artificial neural network isimplemented in a cube of Zinc Selenide, a bulk Kerr-type nonlinear optical material. Inputs are encoded as patterns on an information laser beam propagating through the material. Nonlinear neuron processing results from the 3rd order X{sup}3 opticalnonlinearity of the material. Connectivity and weighting results from optical paths created in the material by a trainable weight pattern imposed on an additional weighting laser beam which propagates through the material along with the input informationbeam. Numerical models and training simulations of this continuum artificial neural network are presented. Ongoing research involves simulations and experimental work toward implementing the same architecture, but with much lower optical power, usingscreening optical nonlinearies present in SBN photorefractive crystals under an applied electric field. Also described are proof of concept experimental results from an optical network built using very thin samples of Kerr-type optical material separatedby long distances for free space propagation of the light to allow detection of the network output.
机译:通常设想人造(和生物学)神经网络作为大型连接离散非线性处理器的集合。存在有限数量的神经元,并且每个神经元可以单独识别并占据2D或3D空间中的确定分配。在神经元之间也存在许多但有限数量的互连。在尝试在硬件中建立神经网络时,主要障碍正在实现所有但最简单的应用所需的这些物理互连的大量数量。作为替代方案,本文介绍了以散装材料实现的可训练计算装置的物理开发,作为前馈连续的连续式人工神经网络(罐头)。非线性神经处理和连接是在实现网络的散装材料中固有的线性和非线性物理过程的自然结果。可以从外部控制这些物理过程,并且控制机构可以通过基于梯度下降优化的误差反向衰减方法而漂亮。培训时,物理系统可以用作前馈人工神经网络。下面介绍一个例子,其中在硒化锌锌型非线性光学材料中以锌的立方体拍摄的前馈人工神经网络。输入被编码为通过材料传播的信息激光束上的图案。非线性神经元处理由第三阶X {SUP} 3荧光灯线的材料。通过施加在材料中产生的光学路径的连接和加权结果,其施加在额外的加权激光束上,该加权激光束与输入信息一起传播。提出了这种连续性人工神经网络的数值模型和训练模拟。正在进行的研究涉及实施相同的架构的模拟和实验工作,但是具有大得多的光功率,在施加的电场下的SBN光反射晶体中存在的光学非线性。还描述了由使用非常薄的Kerr型光学材料样本的光网络的概念实验结果证明,用于允许光的自由空间传播,以允许检测网络输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号