首页> 外文会议>Amrican society for composites technical conference >Assessment of a Local Fiber Stress Parameter for Thermomechanical Fatigue Life Prediction of Titanium Matrix Composites
【24h】

Assessment of a Local Fiber Stress Parameter for Thermomechanical Fatigue Life Prediction of Titanium Matrix Composites

机译:评估钛基复合材料热机械疲劳寿命预测局部纤维应力参数

获取原文
获取外文期刊封面目录资料

摘要

Titanium Matrix Composites (TMC's) are envisioned for use in the next generation of advanced aircraft and their engines. To ensure a smooth transition to industry, life predictio methodologies, which can account for radom variations in mechanical and thermal loads and are base don the physicla dmage processes of the material in question, must be developed. To facilitate the development of such a model, fatigue testing has been conducted at Georgia Tech on (0/+-45/90)_s and (90/+-45/0)_s laminates of SCS-6/Timetal 21S. The tests were done at temperatures of 400, 500 and 650 deg C, with hold times of 1, 10 and 100 seconds superimposed at the maximum stress. The purpose of the tests was to separate the effect of time dependent deformation from the effect of environmental degradation. Using the results of these tests and results generated at NASA-Lewis Research Center (LeRC) and the U.S> Air Force's Wright Laboratories, a model has bene developed which is based on the stress in the load carrying fibers. This stress is modified by an effective stress concentration factor which is due to matrix cracking and a factor which includes the effect of fhole times. This is a single term to matrix cracking and a factor which includes the effect of hold times. This is a single term model that can account for differences in test parameters and would be able to account for any variation in mechanical and thermal load. This model is compared to five methodologies previously developed for life prediction and is shown to have significantly better predictive power while reducing the number of empirical constants and curve fitting parameter necessary to collapse the data.
机译:设想钛基质复合材料(TMC),用于下一代高级飞机及其发动机。为了确保流畅过渡到行业,寿命预测方法可以考虑机械和热负荷的拉伸变化,并且必须开发出质量的物质的基础and Physicla DMAGE过程。为了促进这种模型的发展,在Georgia Tech(0 / + - 45/90)_s和(90 / + - 45/0)_s层压板的SCS-6 /时刻表21s的层压板上进行了疲劳测试。测试在400,500和650℃的温度下进行,保持时间为1,10和100秒,叠加在最大应力下。测试的目的是将时间依赖性变形与环境降解的影响分开。使用这些测试和结果的结果,在NASA-LEWIS研究中心(LERC)和U.S>空军的赖特实验室,该模型具有BENE开发,基于承载纤维的应力。这种应力由有效应力浓度因子改性,其是由于基质裂缝和包括Fhole时间的效果的因子。这是矩阵开裂的单个术语,以及包括持有时间的效果的因素。这是一个单一的术语模型,可以考虑测试参数的差异,并且能够考虑机械和热负荷的任何变化。该模型与以前为寿命预测开发的五种方法进行了比较,并且被示出具有明显更好的预测力,同时减少折叠数据所需的经验常数和曲线配合参数的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号