首页> 外文会议>Society of Petrophysicists and Well Log Analysts, Inc.;SPWLA Annual Logging Symposium >DIGITAL FLUID SAMPLING IN DEEP WATER RESERVOIRS USING RESERVOIR FLUID GEODYNAMICS. THE BEGINNING OF THE DIGITAL FLUID SAMPLING REVOLUTION
【24h】

DIGITAL FLUID SAMPLING IN DEEP WATER RESERVOIRS USING RESERVOIR FLUID GEODYNAMICS. THE BEGINNING OF THE DIGITAL FLUID SAMPLING REVOLUTION

机译:水库流体地球力学深水壳中的数字流体采样。 数字流体采样革命的开始

获取原文

摘要

Reservoir Fluid Geodynamics (RFG) is a novel thermodynamic methodology that integrates pressure-volume-temperature (PVT), geochemical fingerprinting (GCFP) and reservoir geology with downhole fluid analysis (DFA) data to understand the evolution of reservoir fluids over geologic time. RFG enables the enhancement of reservoir description, estimation of reservoir fluid properties, and optimization of data acquisition plans. Deep-water reservoirs comprise multiple uncertainties in reservoir connectivity, viscous oil and flow assurance. This paper demonstrates the development of digital fluid sampling techniques for deep-water fields using the RFG workflow to predict fluid properties and distribution, to address compartmentalization uncertainties and flow assurance risks, as well as to redefine the well-logging program.Identifying key reservoir concerns is the first step during the implementation of the RFG workflow. Five questions define key reservoir concerns: Do optical density measurements explain the impact of biogenic methane on fluid behavior? Is it feasible to characterize baffling and fault compartmentalization? Can we predict reservoir fluid properties and assess flow assurance risks based on fluid behavior? Is it possible to identify all this in real time? How could we optimize future fluid sampling programs? The next step is to collect the available DFA data and to integrate it with the existing PVT and geochemistry datasets. This paper describes the evaluation of over 150 fluid sampling DFA measurements acquired during the operational history of a Gulf of Mexico field. Fluid behavior and optical density gradients are interpreted from a geological perspective to understand reservoir connectivity. A strong correlation between optical density and asphaltene content enables digital fluid sampling for different PVT and geochemical parameters. Lastly, a general correlation of optical density and asphaltene content is derived for multiple Gulf of Mexico oil fields.Optical density measurements support a consistent characterization of biogenic methane along the studied deep-water field, suggesting a relation to fluid migration and charging from deeper to shallower reservoirs. Likewise, optical density gradients and its integrated evaluation facilitate the identification of mass transport complex (MTC) baffles in the north part of the field and the characterization of fault compartments in the main reservoir sands. In addition, the RFG workflow reveals the difference in fluid behavior of sampled wells located in the area of a water injection project by identifying asphaltene clustering near the oil-water contact. The correlations of optical density and asphaltene content help to predict fluid properties and to estimate its uncertainty, benefiting risk assessment for asphaltenes deposits and flow assurance in deep water operations. Real time analysis of optical density measurements during fluid sampling permits the characterization of fluid properties and reservoir connectivity, optimizing future fluid sampling programs when fluid contamination reaches 10%. Ultimately, this innovative methodology conveys a general correlation to predict asphaltene content based on optical density measurements for deep-water reservoirs in the Gulf of Mexico, enabling the possibility to predict reservoir fluid properties in real time fluid sampling operations.
机译:储层流体地球动力学(RFG)是一种新型热力学方法,其与井下流体分析(DFA)数据集成了压力 - 体积 - 温度(PVT),地球化学指纹识别(GCFP)和储层地质,以了解储层流体在地质时间上的演变。 RFG能够提高储层描述,储层流体特性的估计,以及数据采集计划的优化。深水壳包括储层连通性,粘性油和流量保证的多个不确定性。本文展示了使用RFG工作流程来预测流体性能和分布的深水场的数字流体采样技术的开发,以解决隔间化的不确定性和流量保障风险,以及重新定义良好的记录程序。识别密钥库涉及的是实现RFG工作流程期间的第一步。五个问题定义关键储层问题:光学密度测量是否解释了生物甲烷对流体行为的影响?令人难以置信的是令人难以置信的障碍和故障舱位化吗?我们可以预测储层液体性能,并根据流体行为评估流量保证风险吗?是否有可能实时识别所有这一切?我们如何优化未来的流体采样计划?下一步是收集可用的DFA数据并将其与现有的PVT和地球化学数据集集成。本文介绍了在墨西哥湾峡谷的运营史上获得的150多个流体采样DFA测量的评估。从地质角度解释流体行为和光学密度梯度以了解储层连通性。光密度和沥青质含量之间的强相关性使得用于不同的PVT和地球化学参数的数字流体采样。最后,衍生光密度和沥青质含量的一般相关性用于墨西哥油田的多个湾。光学密度测量支持沿着研究的深水场的生物甲烷的一致表征,表明与流体迁移和从更深的储层充电的关系。同样地,光密度梯度及其综合评价有助于识别现场北部的大规模运输复合体(MTC)挡板,以及主储层砂中的故障舱的表征。此外,RFG工作流程揭示了通过鉴定油水接触附近的沥青质聚类,揭示了位于注水工程面积中的采样孔的流体行为的差异。光密度和沥青质含量的相关性有助于预测流体性质并估计其不确定性,使沥青铁矿沉积物的风险评估受益于深水操作中的流动保证。流体采样期间的光密度测量的实时分析允许在流体污染达到10%时优化未来流体采样程序的流体性能和储层连通性的表征。最终,这种创新方法传达了一般性相关性以预测基于墨西哥湾的深水储层的光密度测量来预测沥青质含量,从而能够在实时流体采样操作中预测储层液体性能。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号