首页> 外文会议>IEEE International Solid- State Circuits Conference >14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver
【24h】

14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver

机译:14.7自适应模拟温度愈合低功耗17.7至19.2GHz RX前端,具有±0.005dB /°C增益变化,<1.6dB NF变化,以及<2.2DB IP1DB跨-15至85°C的变化相位阵列接收器

获取原文

摘要

Phased arrays have demonstrated great potential in 5/6G communication, radar and sensor applications [1– 4]. To achieve excellent performance, phased arrays require low-noise and high-linearity front-ends [5]. Most importantly, arrays demand uniform performance from all elements for optimum receiving G/T value and transmission effective isotropic radiated power (EIRP) [6]. Figure 14.7.1 exemplifies it with an array whose antenna element has 3dBi uniform gain on one side and no radiation on the other side. When all elements in an $8 imes 1$ linear array with a $lambda/2$ space have identical characteristics, the array presents a 19dBi gain in the normal direction. Any temperature change in the array can be decomposed into an absolute temperature change superposed with a relative temperature variation. When the absolute temperature increases, the frontend gain decreases by as much as $-0.1dB/^{circ}C$ [1]. When there is non-uniform solar radiation or heat generation inside the array, the relative temperature variation may present a gradient or a parabolic distribution. Taking a $64 imes1$ array as an example, when there is a gain/phase mismatch with an average value of $0.125dB/1.25^{circ}$ between adjacent elements in a parabolic distribution locating at the center of the array, the formed beam presents a 1.4dBi main-lobe reduction in the normal direction and an 11.9dBi side-lobe degradation, shown in Fig. 14.7.1. It also shows an active array receiver front-end highlighting all the temperature-sensitive blocks. Calibration can adjust temperature-dependent performances [7]. However, periodic calibration inevitably takes time overhead and prevents array systems from full-time operations. Digital background calibration allows systems to operate uninterrupted, but may induce antenna boresight instability due to abrupt gain/phase change. In contrast, analog background calibration like adaptive healing design can resolve the above issues [8]. In this paper, we present an adaptive analog temperature healing receiver front-end with ± $0.005 dB/^{circ}C$ gain variation from -15 to $85^{circ}C$ environment temperature for a 17.7-to-19.2GHz phased array.
机译:相控阵列在5 / 6G通信,雷达和传感器应用中展示了很大的潜力[1-4]。为了实现出色的性能,相控阵需要低噪声和高线性前端[5]。最重要的是,阵列需要所有元素的均匀性能,以最佳接收G / T值和传输有效的各向同性辐射功率(EIRP)[6]。图14.7.1用一个阵列的阵列举例说明了一个阵列,其天线元件在一侧具有3DBi均匀增益,另一侧没有辐射。当US $ 8 Times的所有元素1 $线性阵列具有$ lambda / 2 $空间时具有相同的特性,阵列呈现在正常方向上的19dbi增益。阵列中的任何温度变化都可以分解成具有相对温度变化的绝对温度变化。当绝对温度升高时,前端增益减少多达-0.1db / ^ { cir} c $ [1]。当阵列内部存在非均匀的太阳辐射或发热时,相对温度变化可以呈现梯度或抛物线分布。以64美元 times1 $阵列为例,当存在在阵列中心的抛物线分布中的相邻元素之间的平均值为0.125db / 1.25 ^ { cirt} $之间的增益/相位不匹配时,形成的光束在正常方向上呈现1.4DBI主叶片减小和11.9dbi侧瓣降解,如图2所示。14.7.1。它还显示了一个有源阵列接收器前端,突出显示所有温度敏感块。校准可以调整温度依赖性的性能[7]。但是,周期性校准不可避免地需要时间开销并防止阵列系统从全日制操作。数字背景校准允许系统不间断地操作,但由于突然的增益/相位变化,可能会诱导天线稳定性。相比之下,模拟背景校准等自适应愈合设计可以解决上述问题[8]。在本文中,我们提出了一个自适应模拟温度愈合接收器前端,±$ 0.005 db / ^ { ryl} c $增益变化从-15到85 ^ { cif} c $环境温度为17.7至19.2 GHz序列阵列。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号