首页> 外文会议> >Graphene-polymer nanocomposites Coatings for Corrosion Inhibition of Mg
【24h】

Graphene-polymer nanocomposites Coatings for Corrosion Inhibition of Mg

机译:石墨烯 - 聚合物纳米复合材料涂层,用于腐蚀抑制mg

获取原文

摘要

Mg is a very promising material for lightweight construction and biomedical applications. However,the applicability of Mg and its alloys is hindered by its high corrosion susceptibility. [1] Moreover,due to the toxicity of most inorganic conversion coating systems, the development of novel pretreatmentstrategies for technical alloys are of vital importance. Recently, the application ofintrinsically conducting polymers (ICPs) have been introduced as an alternative approach forcorrosion protection of Mg alloys. [2] ICPs with electronic conductivity are known to be able topassivate small defects, however they fail in the presence of large defects due to fast coatingreduction and increased cation transport if macroscopically extended percolation networks exist.[3]The aim of this study is to develop graphene-polymer nanocomposite thin films for corrosionprotection of Mg-alloys. As polymer matrix, poly(4-vinyl pyridine) (P4VP) was selected due to itssemiconducting properties and protonic conductivity. In contrast to ICPs with electronicconductivity, the pH-dependant, reversible protonation/de-protonation capability of the P4VP hasbeen utilized to synthesize environment-responsive coatings. Graphene sheets, synthesized viaexfoliation of graphite in the presence of perylene tetracarboxylic acid (PTCA) were incorporated asnanofillers to create more tortuous path for the diffusion of corrosive ions and water, to minimizepercolation effects, as well as to improve the mechanical properties of the nanocompositecoatings.The macroscopic corrosion properties of the nanocomposite coatings were investigated by meansof electrochemical methods such as linear sweep voltammetry (LSV) and electrochemicalimpedance spectroscopy (EIS) in different corrosive media simulating technical and biomedicalapplications. For both environments significant reduction in anodic corrosion activities have beenobserved, which indicates a suppression of both Mg-dissolution and anodic hydrogen evolutionreactions. Electrochemical studies were complemented by in situ Atomic Force Microscopy (AFM)investigations to analyse localized corrosion processes and coating degradation in the presence ofartificial defects as well as under simultaneous corrosive and mechanical load.The presentation will summarize our recent results on the synthesis and characterization of thisnovel coating system with a special focus on their interfacial stability and corrosion protectionproperties.
机译:MG是一种非常有前途的轻质结构和生物医学应用的材料。然而, 通过其高腐蚀性易感性阻碍了MG及其合金的适用性。 [1]此外, 由于大多数无机转化涂料系统的毒性,新型预处理的发展 技术合金的策略至关重要。最近,应用程序 本质导电聚合物(ICP)已作为替代方法引入 Mg合金的腐蚀保护。已知具有电子电导率的ICP能够 钝化小缺陷,但由于快速涂层,它们在存在大缺陷时失效 如果存在宏观扩展的渗流网络,则减少和增加的阳离子运输。 [3] 本研究的目的是开发石墨烯 - 聚合物纳米复合薄膜用于腐蚀 保护Mg-合金。作为聚合物基质,由于其含量为聚(4-乙烯基吡啶)(P4VP) 半导体性能和质子电导率。与ICP相反,用电子 P4VP的电导率,pH依赖性,可逆的质子化/去质子化能力 已被利用以合成环境响应涂层。石墨烯片,通过合成 将石墨在存在的鲍缩四羧酸(PTCA)中的剥离掺入 纳米填充物为腐蚀性离子和水的扩散产生更多的曲折路径,以最小化 渗透效果,以及改善纳米复合材料的机械性能 涂料。 通过手段研究了纳米复合涂层的宏观腐蚀性能 电化学方法如线性扫描伏安法(LSV)和电化学 在不同腐蚀性介质中模拟技术和生物医学的阻抗光谱(EIS) 应用程序。对于这两个环境,阳极腐蚀活动的显着降低 观察到,表示抑制Mg溶解和阳极氢进化 反应。通过原位原子力显微镜(AFM)互补电化学研究 在存在下分析局部腐蚀过程和涂层劣化的研究 人工缺陷以及在同时腐蚀性和机械负荷下。 介绍总结了我们最近的结果对此的合成和表征 新型涂层系统专注于其界面稳定性和腐蚀保护 特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号