首页> 外文会议>応用物理学会秋季学術講演会;応用物理学会 >Peering into Carrier Transport Mechanism of Anatase/Rutile Core/Shell TiO_2 NFs Photocatalysts by Photo-Kelvin Probe Force Microscopy
【24h】

Peering into Carrier Transport Mechanism of Anatase/Rutile Core/Shell TiO_2 NFs Photocatalysts by Photo-Kelvin Probe Force Microscopy

机译:光开尔文探针力显微镜研究锐钛矿/金红石核/壳TiO_2 NFs光催化剂的载流子传输机理

获取原文

摘要

Photocatalysis has raised a lot of interests due to the contribution to renewable energy production and organic pollutant decomposition. Among various photocatalysts, TiO_2 is widely used due to its advantages, such as highly active photocatalytic property, chemical, and thermal stability, environment-friendly, non-toxic and low cost. Generally, anatase TiO_2 is much active than rutile TiO_2, the anatase/rutile mixed-phase TiO_2 seems to have superior photocatalytic performance. It is known that the band alignment between two phases is a crucial factor for carrier separation after photogeneration. In this study, we demonstrate a method for measuring surface potential shifts of core/shell TiO_2 nanofibers (NFs) by photo-Kelvin probe force microscopy (photo-KPFM) to reveal assessment of surface charge accumulation after light irradiation. According to the results, core-shell TiO_2 facilitate the separation of electron-hole pair, in which anatase acts as an electron acceptor and rutile acts as a hole trap. The Pt nanoparticles decorated anatase/rutile core/shell TiO_2 NFs could promote an obvious accumulation of electron on the surface and give rise to a large surface potential shift. The surface potential shift is well correlated to the photodegradation activity. Based on the studies, we can construct a band structure model of anatase/rutile core/shell TiO_2 NFs. For the anatase and rutile TiO_2, the aligned conduction bands allow the electron injecting between two phases seamlessly. For the valence band edges, the small offset between anatase TiO_2 and rutile TiO_2 impedes the holes inject from rutile to anatase. The decorated Pt NPs which contact with rutile TiO_2 forms a Schottky interface; therefore, the electrons can further inject from the semiconductor to the metal.
机译:光催化由于对可再生能源生产和有机污染物分解的贡献而引起了很多兴趣。在各种光催化剂中,由于具有高活性的光催化性能,化学和热稳定性,环境友好,无毒和低成本等优点,TiO_2被广泛使用。通常,锐钛矿型TiO_2比金红石型TiO_2具有更高的活性,锐钛矿/金红石混合相TiO_2似乎具有优异的光催化性能。众所周知,两相之间的能带对准是光生之后载流子分离的关键因素。在这项研究中,我们演示了一种通过光开尔文探针力显微镜(photo-KPFM)来测量核/壳TiO_2纳米纤维(NFs)的表面电势变化的方法,以揭示光照射后表面电荷积累的评估。根据该结果,核-壳TiO_2促进了电子-空穴对的分离,其中锐钛矿充当电子受体,金红石充当空穴陷阱。 Pt纳米粒子修饰的锐钛矿/金红石核/壳TiO_2 NFs可以促进表面上电子的明显积累,并引起较大的表面电势漂移。表面电势变化与光降解活性密切相关。在此基础上,我们可以建立锐钛矿/金红石核/壳TiO_2 NFs的能带结构模型。对于锐钛矿和金红石TiO_2,对齐的导带允许电子在两相之间无缝注入。对于价带边缘,锐钛矿TiO_2和金红石TiO_2之间的小偏移阻碍了从金红石注入到锐钛矿的空穴。与金红石型TiO_2接触的修饰的Pt NPs形成肖特基界面。因此,电子可以进一步从半导体注入到金属中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号