【24h】

Towards Continuous Domain Models in Spatial Epidemiology

机译:走向空间流行病学的连续域模型

获取原文

摘要

One of the goals of spatial epidemiology is to identify areas with elevated disease risk. Such analyses are often hampered by the limited geographical resolution of the available data. When data are aggregated into spatial units, conditional autoregressive (CAR) models are commonly used. When data are available at higher resolution (e.g. geocodes), log-Gaussian Cox processes (LGCPs) provide a more natural modelling framework. In theory, LGCPs should perform better, but do they? We simulated data mimicking childhood leukaemia incidence in the Canton of Zurich in Switzerland (n=334 during 1985-2015). Geocoded locations of residence were available for the entire population. We randomly sampled case locations from these data under different risk scenarios. We considered 39 scenarios varying the shape of the true risk function (constant, step-wise, exponential decay), size of the high-risk areas (1, 5 and 10 km radii), risk increase in the high-risk areas (2 and 5-fold) and the number of cases (n, 5n and 10n). We compared the ability of the models to recover the true risk surface using the root mean integrated squared error (RMISE) and their ability to identify high-risk areas using area under the ROC curve (AUC). CAR models recovered the step-wise true risk surface with lower error across all scenarios (range of median RMISE across scenarios: 0.05-0.25) compared to LGCPs (median RMISE: 1.80-37.2). For exponential decay risk surfaces, however, LGCPs performed better (median RMISE: 1.70-20) compared to CAR (median RMISE: 1.80-32) in almost all scenarios. The ability to detect high-risk areas was higher for LGCPs (median AUC: 0.81-1) compared to the CAR model (median AUC: 0.65-0.93) across almost all scenarios. Our simulation study suggests that, under realistic scenarios, continuous domain models outperform discrete domain models in estimating risk surfaces and identifying high-risk areas. This argues for moving towards continuous domain models in spatial epidemiology.
机译:空间流行病学的目标之一是确定疾病风险较高的地区。此类分析通常因可用数据的地理分辨率有限而受阻。将数据汇总为空间单位时,通常使用条件自回归(CAR)模型。当可以以更高的分辨率(例如,地理编码)获得数据时,对数高斯Cox流程(LGCP)提供了更自然的建模框架。从理论上讲,LGCP应该表现得更好,但是他们呢?我们模拟了模仿瑞士苏黎世州儿童白血病发病率的数据(1985-2015年间,n = 334)。地理编码的居住地点适用于整个人口。我们从不同风险情况下的这些数据中随机抽取了案例位置。我们考虑了39个场景,这些场景会改变真实风险函数的形状(恒定,逐步,指数衰减),高风险区域的大小(半径分别为1、5和10 km),高风险区域的风险增加(2)和5倍)和病例数(n,5n和10n)。我们比较了使用均方根综合平方误差(RMISE)的模型恢复真实风险表面的能力,以及使用ROC曲线下的面积(AUC)识别高风险区域的能力。与LGCP(中位数RMISE:1.80-37.2)相比,CAR模型在所有情况下(所有方案的中值RMISE范围:0.05-0.25)以较低的误差恢复了逐步的真实风险面。但是,对于指数衰减风险面,在几乎所有情况下,LGCP的性能均优于CAR(中位数RMISE:1.80-32)(中位数RMISE:1.70-20)。在几乎所有情况下,相比于CAR模型(​​中位AUC:0.65-0.93),LGCPs(中位AUC:0.81-1)的检测高风险区域的能力更高。我们的模拟研究表明,在现实情况下,连续域模型在估计风险面和识别高风险区域方面要优于离散域模型。这为空间流行病学转向连续域模型辩护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号