【24h】

REAL-TIME SOLUTION ANALYSIS IN MICROFLUIDIC DEVICES USING OPTICAL SPECTROSCOPY

机译:光学光谱技术在微流控设备中的实时分析

获取原文

摘要

Nuclear energy represents one of the strongercandidates to meet the worlds’ ever-growing energyneeds. However, the nuclear fuel cycle faces manychallenges; in particular improved methods formonitoring radioactive materials throughout the cycle areneeded to maintain proper safeguards and ensure safeand efficient processing of materials. Development ofmore effective, reliable, and fast methods for monitoringradioactive materials is integral to the continueddevelopment of the nuclear fuel cycle.The advancement of microfluidics and lab-on-a-chipdesigns has provided a pathway of experimentation thatutilizes volumes which are orders of magnitude less thanprevious techniques. For radioactive applications thebenefits of lower dose to workers and equipment, smallerfeedstock volumes, and less waste make these techniquesof significant interest. With these benefits come thecomplication of solution analysis, as conventionalspectroscopic techniques require much larger volumes.An example is Raman spectroscopy, which has been usedextensively for solution analysis; of key interest to thenuclear field is measurement of species such as actinidedioxocations, organic solvent components andcomplexants, inorganic oxo-anions (NO_3~-, CO_3~(2-), OH~-,SO_4~(2-), etc), and pH/acid concentration.Typical Raman probes require a minimum solutionvolume on the order of mLs in order to obtainquantifiable measurements of solution components,especially those with low concentrations. A new micro-Raman probe has been developed which significantlyreduces the focal region of the excitation beam andallows for the interrogation of reduced sample volumes.The micro-Raman probe focal region readily fits intomost microfluidic chip channels as well as micro flowcells.Instrument performance was tested on a variety ofsolution systems including a flowing stream of uranylnitrate in nitric acid. A micro-Raman probe was used tomeasure the uranyl nitrate and nitric acid sequentiallyinjected through the microfluidic cell. The application ofchemometric analysis was performed to quantify theuranyl, nitric acid, and total nitrate within the systembased on the Raman spectra. Probe performance formonitoring two-phase systems including complicationswith interfering species was also explored. Overall, thisnovel spectroscopic probe has successfully enabled theon-line analysis of a variety of streams on the microscale.This paper focuses on our current progress in on-line,real-time process monitoring. Advances in spectroscopictechnology and our analytical approach will be discussed.An overview of the successful application withinmicrofluidic systems will be discussed.
机译:核能代表了一个强大的一个 候选人,以满足世界的不断增长的能量 需要。但是,核燃料循环面临着许多 挑战;特别是改进的方法 在整个循环中监测放射性物质 需要维持适当的保障,确保安全 有效地处理材料。的发展 更有效,可靠和快速监测方法 放射性物质是持续的一体化 发展核燃料循环。 微流体和实验室芯片的进步 设计提供了一种实验的途径 利用量的数量小于 以前的技术。用于放射性应用 低剂量对工人和设备的益处,更小 原料卷,较少的废物制造这些技术 重大兴趣。随着这些好处来了 解决方案分析的并发症,如常规 光谱技术需要更大的体积。 一个例子是拉曼光谱,已被使用 广泛用于解决方案分析;关键兴趣 核领域是测量actinide等物种 脱涂,有机溶剂组分和 复合剂,无机氧代阴离子(NO_3〜 - ,CO_3〜(2-),哦〜 - , SO_4〜(2-)等)和pH /酸浓度。 典型的拉曼探头需要最小的解决方案 在MLS的顺序上的体积才能获得 可量化的溶液组件测量, 特别是那些浓度低的人。一个新的微型 已经开发了显着的拉曼探测器 减少激发梁的焦点区域和 允许询问减小的样本卷。 微拉曼探针焦点区域容易配合 大多数微流体芯片通道以及微流量 细胞。 仪器性能在各种各样的情况下测试 溶液系统包括流动的铀酰流 硝酸硝酸。使用微拉曼探针 顺序测量硝酸铀酰和硝酸 通过微流体细胞注入。应用 进行化学计量分析以量化 铀酰,硝酸和系统内的总硝酸盐 基于拉曼光谱。探测性能 监测包括并发症的两阶段系统 还探讨了干扰物种。总的来说,这 新型光谱探针已成功启用 在微尺度上的各种流的在线分析。 本文重点介绍我们在线的目前的进展, 实时流程监控。光谱进展 将讨论技术和我们的分析方法。 在内部成功申请的概述 将讨论微流体系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号