【24h】

Chromium-Coated Cladding Effects in the Context of 10 CFR 50.46c

机译:10 CFR 50.46c背景下的镀铬覆层效应

获取原文

摘要

A major initiative in the nuclear industry is thedevelopment of accident tolerant fuel (ATF) designs. Onesuch design involves a chromium layer applied to theouter surface of a zirconium alloy cladding for thepurpose of corrosion resistance during normal operationas well as resistance to high temperature oxidation duringloss-of-coolant accidents (LOCAs). The NuclearRegulatory Commission is nearing the completion of the10 CFR 50.46c rulemaking which will revise theacceptance criteria for LOCA analyses. While theprimary focus of the rulemaking is to transition toperformance-based LOCA acceptance criteria, whichwould facilitate transitions to cladding materials otherthan zirconium, the supporting research into the newcladding embrittlement mechanisms for zirconium alloysis most notable for its consideration of the influence ofresident hydrogen on oxygen diffusion into the cladding.To address the effect of resident hydrogen, a hydrogenbasedequivalent cladding reacted (ECR) limit isproposed under 10 CFR 50.46c which would reduce theallowable amount of cladding which could react during aLOCA transient as the fuel burns via normal operation ina reactor core. The chromium coating, with expectationsof reduced corrosion and hydrogen absorption duringnormal operation, has the potential to mitigate thisconcern significantly.Furthermore, the effect of the coatings could enableperformance-based limits to be established based on thefailure mechanisms of coated cladding. The existing1204°C (2200°F) peak cladding temperature (PCT) limitfor zirconium alloys is intended to protect against adeparture from normal oxidation kinetics (“runawayoxidation”) which can lead to fuel failure and rapidembrittlement. Different failure mechanisms exist for achromium-coated cladding with less limiting oxidationbehavior, improving the margins between accidentconsequences and appropriately defined analysis figuresof-merit. Increases in the PCT limit along with reducedexothermic reaction during the postulated accidentimprove physical and analytical safety margins.The integration of fuel rod design, nuclear design, andLOCA analysis methods under the FULL SPECTRUM™1LOCA (FSLOCA™) Evaluation Model (EM) [1] wasshown to be aligned with the requirements of the 10 CFR50.46c rulemaking in [2]. Adjustments have been madeto the method described in [2] to accommodate thebehavior and physical limits of chromium-coatedcladding within the same analytical framework, and theresulting increase in safety margins is demonstrated.
机译:核工业的一项重大举措是 事故容忍燃料(ATF)设计的开发。一 这样的设计涉及到镀铬层。 锆合金熔覆层的外表面 正常运行时耐腐蚀的目的 以及在高温下抗高温氧化的能力 冷却液损失事故(LOCA)。核能 监管委员会即将完成 10 CFR 50.46c规则制定,将修改 LOCA分析的验收标准。而 制定规则的主要重点是过渡到 基于性能的LOCA接受标准,其中 将有助于过渡到其他覆层材料 比锆,对新材料的支持研究 锆合金的熔覆脆化机理 最受关注的是 氢在氧气扩散到覆层中时会残留。 为了解决常驻氢的影响,一种氢基 等效包层反应(ECR)极限为 根据10 CFR 50.46c提出的建议,它将减少 允许的包层数量,可能会在 LOCA在燃料通过正常运行中燃烧时瞬变 反应堆堆芯铬涂层,期望值 减少腐蚀和氢吸收 正常运行,有可能缓解这种情况 非常关注。 此外,涂层的效果可以使 基于性能的限制将基于 涂层熔覆层的失效机理。现有的 1204°C(2200°F)峰值包层温度(PCT)限制 锆合金的目的是防止 偏离正常的氧化动力学(“失控 氧化”),这可能会导致燃料故障并迅速 脆化。存在不同的故障机制 镀铬覆层,极限氧化少 行为,提高事故之间的余地 后果和适当定义的分析数据- 优点。 PCT限额的提高,同时降低 假定事故期间的放热反应 提高物理和分析安全裕度。 集成燃料棒设计,核设计和 FULL SPECTRUM™1下的LOCA分析方法 LOCA(FSLOCA™)评估模型(EM)[1]为 显示符合10 CFR的要求 [2]中的50.46c规则制定。进行了调整 按照[2]中所述的方法来适应 镀铬的行为和物理极限 在相同的分析框架内进行包覆,并且 结果证明了安全边际的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号