【24h】

IN-SITU Rb-Sr DATING USING PROTEUS: COLLISIONCELL MC-ICPMS

机译:使用蛋白质进行原位Rb-Sr约会:COLLISIONCELL MC-ICPMS

获取原文

摘要

The beta decay of ~(87)Rb to ~(87)Sr was one of the earliest examples of a radioactive system beingharnessed as a tool for geochronology. However, a characteristic and complicating feature ofisotopic analysis of β-decay systems such as Rb-Sr is the presence of an isobaric overlap of theparent and daughter nuclides. Previously this meant that time-consuming chemical separation ofthe two elements was required before analysis, and in-situ analysis was extremely difficult. Thedevelopment of collision cell inductively coupled plasma mass spectrometer (ICPMS) technologyand advances in the understanding of ion gas reactions has now permitted the in-situ analysis ofRb-rich major mineral phases (rock forming minerals) such as biotite, k-feldspar. A variety ofreaction gases such as N2O, SF6 and CH3F gases have been utilised for ion gas reactions with Sr+within a collision cell to form products with a greater mass [1]. Crucially Rb+ does not display anyreactivity towards these gases and does not form a polyatomic ion. The contrast in behaviour of Srand Rb with these reaction gases means that chemical resolution of the two elements can beachieved directly during analysis. This method has been successfully attempted using inductivelycoupled plasma – triple quadrupole mass spectrometer (ICP-QQQ) technology [2, 3].Here we demonstrate the inherit advantages of using the prototype collision cell multi-collector –inductively coupled plasma mass spectrometer (MC-ICPMS) ‘Proteus’ compared to ICP-QQQ.Our results (Fig. 1) show that using either SF6 or CH3F reaction gases, Sr+ can be chemicallyresolved from Rb+ through ion gas reactions, preserving up to 80 % of the original Sr+ analytesignal as a polyatomic product that is produced in the collision cell. In addition to the chemicalresolution of Sr, the in-situ Rb-Sr analysis conducted here utilises the recently developedtechnology of nanopowder tablets, which are used in this work as a standard that is matrixmatchedto the mineral being analysed. The use of Proteus with these reaction gases and theapplication of nanopowder tablets provides sufficient evidence to proceed in using this techniqueto date a multitude of geological samples using in-situ laser ablation coupled with the firstapplication of collision cell MC-ICPMS for Rb-Sr dating.
机译:〜(87)Rb到〜(87)Sr的β衰变是放射性系统最早的例子之一, 被用作年代学工具。但是,它的特征和复杂特征 β衰变系统(例如Rb-Sr)的同位素分析表明, 父母和女儿的核素。以前,这意味着费时的化学分离 分析之前需要这两个要素,因此原位分析非常困难。这 碰撞池电感耦合等离子体质谱仪(ICPMS)技术的开发 随着对离子气体反应的了解的不断发展,现在已经可以对离子水进行原位分析。 富含b的主要矿物相(成岩矿物),如黑云母,钾长石。各种各样 N2O,SF6和CH3F等反应气体已用于与Sr +的离子气反应 在碰撞室中形成质量更大的产品[1]。至关重要的是Rb +不显示任何 对这些气体具有反应性,不会形成多原子离子。 Sr行为的对比 和Rb与这些反应气体的关系意味着这两种元素的化学分辨率可以是 直接在分析过程中实现。已经成功地尝试了归纳法使用此方法 耦合等离子体–三重四极杆质谱仪(ICP-MS / MS)[2,3]。 在这里,我们展示了使用原型碰撞池多收集器的继承优势– 电感耦合等离子体质谱仪(MC-ICPMS)“ Proteus”与ICP-MS / MS相比。 我们的结果(图1)表明,使用SF6或CH3F反应气体,Sr +可以化学 通过离子气反应从Rb +中分离出来,保留了80%的原始Sr +分析物 信号是碰撞池中产生的多原子产物。除化学 分离Sr的方法,此处进行的原位Rb-Sr分析利用了最新开发的 纳米粉末片剂技术,在这项工作中用作基质匹配的标准 被分析的矿物。在这些反应气体中使用Proteus以及 纳米粉片剂的应用提供了足够的证据来进行这种技术的应用 迄今为止,使用原位激光烧蚀结合第一个方法对大量地质样品进行了分析。 碰撞池MC-ICPMS在Rb-Sr定年中的应用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号