【24h】

Scale spanning subnanometer metrology up to ten decades

机译:跨越十亿分之一秒的尺度范围

获取原文

摘要

Nanometre accuracy and resolution metrology over large areas is becoming more and more a necessity for the progressof precision and especially for nano manufacturing. In recent years, the TU Ilmenau has succeeded in developing thescientific-technical basics of new ultra-high precision, so called nanopositioning and nanomeasuring machines. In furtherdevelopment of the first 25 mm machine, known as NMM-1 from SIOS Meßtechnik GmbH, we have developed andbuilt new machines having measuring ranges of 200 mm × 200 mm × 25 mm at a resolution of 20 pm and enablemeasuring reproducibility of up to 80 pm. This means a relative resolution of 10 decades. The enormous accuracy is onlymade possible by the consistent application of error-minimum measurement principles, highly accurate interferometricmeasurement technology in combination with highly developed measurement signal processing and comprehensive errorcorrection algorithms. The probing of the measurement objects can optionally be carried out with the aid of precisionoptical, interference-optical, tactile or atomic force sensors. A complex 3D measurement uncertainty model is used forerror analysis. The high performance could be demonstrated as an example in step height measurements with areproducibility of only 73 pm. The achieved resolution of 10~(-10) also presents new challenges for the frequency stabilityof the He-Ne lasers used. Here, the approach of direct coupling of the lasers to a phase-stabilized optical frequency combsynchronized with an atomic clock is pursued. The frequency stability is thus limited by the relative stability of the Rfreference to better than 4·10~(-12) (1s).
机译:大范围的纳米精度和分辨率计量越来越成为进步的必要条件 精度,尤其是用于纳米制造。近年来,Ilmenau TU成功地开发了 新型超高精度的科学技术基础,即所谓的纳米定位和纳米测量机。在进一步 我们开发了第一台25毫米机器,即SIOSMeßtechnikGmbH的NMM-1, 建造了分辨率为20 pm的200 mm×200 mm×25 mm测量范围的新机器,并启用了 测量重现性高达80 pm。这意味着10年的相对分辨率。巨大的准确性只是 始终如一地采用最小误差测量原理,高精度的干涉测量技术,使之成为可能 测量技术,结合高度发达的测量信号处理和全面的误差 校正算法。测量对象的探测可以选择在精度的帮助下进行 光学,干涉光学,触觉或原子力传感器。复杂的3D测量不确定性模型用于 错误分析。可以在台阶高度测量的示例中演示该高性能 重现性仅为73 pm。达到的10〜(-10)分辨率也对频率稳定性提出了新的挑战 所使用的氦氖激光器。在这里,将激光器直接耦合到相位稳定的光学频率梳的方法 追求与原子钟同步。因此,频率稳定性受到Rfreference的相对稳定性的限制,要优于4·10〜(-12)(1s)。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号