首页> 外文会议>IAEE International Conference;International Association for Energy Economics >THE FUTURE OF STEEL PRODUCTION IN GERMANY IN CONTEXT OF INTERNATIONAL COMPETITION AND CO_2 REDUCTION
【24h】

THE FUTURE OF STEEL PRODUCTION IN GERMANY IN CONTEXT OF INTERNATIONAL COMPETITION AND CO_2 REDUCTION

机译:在国际竞争和减少CO_2的背景下德国钢铁生产的未来

获取原文

摘要

OverviewShifting an energy intensive industry from one country to another could help reaching the greenhouse gas reductiontargets of the industry-exporting country. However, the reallocation will result in higher emissions on the global levelif the production in the industry-importing country is associated with higher specific emissions. Cost advantages couldfoster such reallocation of production and the respective emergence of carbon leakage. In this study, we consider theexample of relocations in the iron and steel industries of China and Germany in order to ascertain resulting effects onCO_2 emissions. We develop different scenarios for the year 2030 by using a multilevel Cross-Impact Balance (CIB)approach and analyse these scenarios in a technology-based cost model. As we find out, due to cost advantages theretends to be a shift of iron and steel production towards China that is associated with higher overall CO_2 emissions.This is a consequence of a rather polluting Chinese iron and steel production sector, whose specific emissions clearlyexceed that of the respective German sector.MethodsIn the past, the steel sector faced large fluctuations in prices of raw materials and in the demand for steel (see e.g., [1,2]). Furthermore, it experienced changes due to the increasing competition, as well as due to the implementation ofmeasures for reducing greenhouse gases. Forecasts of future prices of raw materials and changes on political levelinvolve a high degree of uncertainty. Possible futures can be assessed with the help of scenarios, taking existinguncertainties into account. Prices, demand and policies depend directly and indirectly on a lot of quantitative (e.g.prices for raw materials, transportations cost) and qualitative factors (e.g. GHG reduction policies). Thus, the use ofan approach which can deal with different kinds of factors on different levels, is needed in order to allow for theassessment of the broad range of possible developments. In this study, we apply a two-stage approach: In the firststage, we implement the cross-impact-balance approach for the identification of possible pathways for the steelindustry in general. This approach allows us to take various quantitative and qualitative factors into consideration.Pathways derived from the CIB approach are strongly shaped by the qualitative aspects and usually provideinformation only on the aggregated level [3]. Thus, in the second stage, we use the identified pathways as a frameworkfor numerical calculations applying a technology based cost model.In our case study 41 descriptors have been selected. Beside “price for raw material needed for steel production”,“transportation costs of steel”, “energy efficiency increases in Germany and China” as well as “restrictions on thetrade of steel”, “demand for steel on global level” and “overcapacity in the steel industry” the list of descriptorsincludes descriptors like oil price, economic growth on national and global level, demographic developments,international climate policy, CO_2-reduction targets on national and European level and price for CO_2-allowances.Based on information on the interlinkages beetwen the descriptors consistent combinations of parameters on anaggregated level can be identified. For getting concrete numbers on cost advantages, CO_2 emissions, etc. the resultingCIB-scenarios have to be specified more precisely. In this study we use the identified CIB-scenarios as storylines.These storylines are used as a framework for the analysis conducted by using a technology based cost model.Based on the information about inputs needed for the production of crude steel, prices for the input factors,transportation costs, as well as costs resulting from legal and non-legal constraints, the floor price for a crude steelproducer on a selected market is assessed. For being able to take changes in freight cost into account, a transport model is used, which has been developed following to the approach used by [4]. The approach is based on the assumptionthat the main inputs needed for steel production are transported by sea.ResultsTaking the interlinkages between the descriptors into account we identified 13 consistent scenarios for the year 2030.The scenarios represent different developments of GDP, oil prices, transportation cost and climate change policies.The analysis shows inter alia the indirect dependencies of cost factors on non-monetary factors.Fig. 1 shows results of the calculations. Scenario “S0” is calculated using information on prices and overcapacities of2015. Assuming that due to high overcapacities in China the resulting competitive pressure will lead to Chinese steelproducers offering steel in Europe at profit marginrate of zero, the German steel producers will have acost disadvantage of 47 $/t. The emissions of crudesteel produced in China and transported to Europewill be linked with 7% higher CO_2 emissions than thesteel produced with BF-BOF in Germany. If inGermany the energy efficiency increases morestrongly than China and China offers steel at pricesthat includes appropriate profit margins, the pricedifference between Germany and China will becomesmall. In addition the gap in the emissions willincrease. Without free CO_2 permits the situation forGermany will become worse again. If in Chinaenergy efficiency of the BF-BOF production routeincreases or the Chinese steel producers offer steel atlow profit margins (“SII”, “SVI”, “SX”, “SXIII”) theprice gap will increase whereas the difference in theemissions will decrease. Despite the fact that Germansteel sector is strongly dependent on the imports of raw materials, increases in transportation cost affect the overallproduction cost and therefore, Chinese steel producers will suffer more from increases in transportation cost becauseof long transportation distances to Europe (see e.g. “SIV“, “SV”). In the chosen example, German steel producers willbenefit from higher transportation cost. Taking into account other sale markets, like USA, the situation can be differentbecause of higher transportation cost for German steel and lower transportation cost for steel produced in China. Sincethe steel sector in Germany will also be affected by energy and environmental policy, the development of energyefficiency measures in Germany have to be considered within the political framework.ConclusionsThe iron and steel industry belongs to the top five CO_2-intensive industries. With respect to national GHG reductiontargets, a reduction in the economic activities of these sectors might be helpful for reaching the targets. Costdisadvantages resulting e.g. from additional cost for mitigation measures might foster the attitude towards relocationof economic activities. Since a relocation of economic activities usually is linked with higher emissions in othercountries and since the reduction of GHG-emission is a global target, possible effects (i.e. carbon leakage) have to beanalyzed in a global context. In the past, the industry has experienced large fluctuations in prices of raw materials andin the demand for steel. In addition, there have been large changes in the policy framework (i.e. environmentalregulations). There is much uncertainty with regard to future prices for raw materials and other factors. For takinguncertainty into account we analyzed the future of the steel industry in a broader context. Using a multilevel crossimpactbalance approach in combination with a bottom-up cost model we present an approach that enables to take thelinks between several quantitative and qualitative descriptors into account. For the year 2030, all scenarios show costadvantages for the Chinese steel industry selling steel in Europe. Since our calculations are based on average figureson national level and not on plant-specific data the results reflects possible developments on a rather aggregate level.However, the results can nevertheless be employed to identify possible general developments and to indicatechallenges for climate policy as well as for industrial policy.
机译:概述 将能源密集型产业从一个国家转移到另一个国家可能有助于实现减少温室气体排放 工业出口国的目标。但是,重新分配将导致全球范围内更高的排放量 工业进口国的生产是否与较高的比排放有关。成本优势可以 促进生产的这种重新分配以及相应的碳泄漏的出现。在这项研究中,我们认为 为了确定对中国和德国钢铁行业产生的影响而进行的搬迁的例子 CO_2排放量。我们使用多层次交叉影响平衡(CIB)为2030年开发了不同的方案 在基于技术的成本模型中处理和分析这些方案。我们发现,由于那里的成本优势 往往是钢铁生产向中国转移,这与更高的整体CO_2排放量有关。 这是中国钢铁生产部门污染严重的结果,其特定排放量明显 超过了德国各个行业的水平。 方法 过去,钢铁行业面临原材料价格和钢铁需求的大幅波动(例如,参见[1, 2])。此外,由于竞争日益激烈以及实施《公约》,它经历了变化。 减少温室气体的措施。未来原材料价格预测以及政治层面的变化 涉及高度不确定性。可以借助情景评估潜在的未来 不确定因素。价格,需求和政策直接或间接取决于大量的量化指标(例如 原材料价格,运输成本)和质量因素(例如减少温室气体排放的政策)。因此,使用 需要一种可以在不同层次上处理各种因素的方法,以允许 评估可能的广泛发展。在这项研究中,我们采用了两个阶段的方法: 阶段,我们采用交叉影响平衡法来确定钢的可能途径 工业一般。这种方法使我们能够考虑各种定量和定性因素。 从CIB方法得出的途径在定性方面有很强的影响力,通常可以提供 仅在汇总级别上提供信息[3]。因此,在第二阶段,我们使用已确定的途径作为框架 应用基于技术的成本模型进行数值计算。 在我们的案例研究中,选择了41个描述符。除了“钢铁生产所需原材料的价格”之外, “钢铁的运输成本”,“德国和中国的能源效率提高”以及“ 钢铁贸易”,“全球钢铁需求”和“钢铁行业产能过剩”的表述 包括油价,国家和全球范围内的经济增长,人口动态, 国际气候政策,国家和欧洲层面的CO_2减排目标以及CO_2补贴的价格。 基于关于相互联系的信息,描述符上的参数的一致组合 可以确定汇总级别。为了获得有关成本优势,CO_2排放量等的具体数字, 必须更精确地指定CIB方案。在这项研究中,我们使用确定的CIB场景作为故事情节。 这些故事情节用作通过使用基于技术的成本模型进行分析的框架。 根据有关粗钢生产所需投入的信息,投入因素的价格, 运输成本以及法律和非法律约束条件产生的成本,粗钢的底价 对选定市场上的生产者进行评估。为了能够考虑货运成本的变化,使用了一种运输模型,该运输模型是根据[4]所使用的方法开发的。该方法基于假设 钢铁生产所需的主要投入是通过海上运输的。 结果 考虑到描述符之间的相互联系,我们确定了2030年的13种一致方案。 这些情景代表了GDP,石油价格,运输成本和气候变化政策的不同发展。 分析除其他外显示了成本因素对非货币因素的间接依赖性。 图1示出了计算结果。场景“ S0”是使用有关价格和产能过剩的信息计算的 2015年。假设由于中国的高产能过剩,由此产生的竞争压力将导致中国钢铁 生产商在欧洲以利润率提供钢材 零率,德国钢铁生产商将有一个 成本劣势为47美元/吨。原油排放 在中国生产并运输到欧洲的钢材 与二氧化碳排放量相比要高出7%。 BF-BOF在德国生产的钢材。如果在 德国能源效率提高更多 比中国强大,中国以价格提供钢材 包括适当的利润率,价格 中德之间的差异将成为 小的。此外,排放差距将 增加。如果没有免费的CO_2,则情况如下: 德国将再次变得更糟。如果在中国 高炉转炉生产路线的能源效率 增加或中国钢铁生产商以 低利润率(“ SII”,“ SVI”,“ SX”,“ SXIII”) 价格差距将增加,而 排放量将减少。尽管事实是德国人 钢铁行业严重依赖原材料进口,运输成本增加影响整体 生产成本,因此,中国钢铁生产商将因运输成本上涨而遭受更多的损失,因为 到欧洲的长途运输距离(例如,参见“ SIV”,“ SV”)。在所选示例中,德国钢铁生产商将 受益于较高的运输成本。考虑到其他销售市场,例如美国,情况可能有所不同 因为德国钢铁的运输成本较高,而中国生产的钢铁的运输成本较低。自从 德国的钢铁行业也将受到能源和环境政策,能源发展的影响 必须在政治框架内考虑德国的效率措施。 结论 钢铁行业属于CO_2密集型行业的前五名。关于减少国家温室气体排放 目标,减少这些部门的经济活动可能有助于达成目标。成本 产生的缺点缓解措施的额外成本可能会培养人们对搬迁的态度 经济活动。由于经济活动的转移通常与其他国家的较高排放相关联 国家和地区,由于减少温室气体排放是全球目标,因此必须确定可能的影响(即碳泄漏) 在全球范围内进行分析。过去,该行业经历了原材料和原材料价格的大幅波动。 对钢铁的需求。此外,政策框架也发生了重大变化(即环境 规定)。原材料的未来价格和其他因素存在很大的不确定性。为了服用 考虑到不确定性,我们在更广泛的背景下分析了钢铁行业的未来。使用多级交叉影响 平衡方法与自下而上的成本模型相结合,我们提出了一种方法,可以采用 几个定量和定性描述符之间的联系被考虑在内。对于2030年,所有方案均显示成本 中国钢铁业在欧洲销售钢铁的优势。由于我们的计算是基于平均数 在国家一级而不是在特定于工厂的数据上,结果反映了相当总体上的可能发展。 但是,结果仍然可以用于识别可能的总体发展并指出 气候政策以及产业政策面临的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号