首页> 外文会议>IAEE International Conference;International Association for Energy Economics >Offshore Grid Investment Decisions in the North Seas for a Long-Term Scenario with High Levels of Decarbonisation
【24h】

Offshore Grid Investment Decisions in the North Seas for a Long-Term Scenario with High Levels of Decarbonisation

机译:高脱碳水平的长期方案在北海的海上电网投资决策

获取原文

摘要

OverviewIn order to comply with ambitious climate goals, e.g. resulting from the Paris Agreement, a considerabledecarbonisation of today’s energy system is inevitable. As the heat and transport sectors are at present still stronglyrelying on fossil fuels, this long-term transition cannot be limited to the traditional power sector (Mancarella et al.,2016). Based on current deployments and projections, the future multi-energy system will be primarily based onwind and solar generation to supply and decarbonise the energy demand of all relevant energy sectors throughelectricity-based technologies and fuels. While the additional cross-sectoral electricity demand will entail notablyhigher renewable generation capacities for future power systems, it might also bring, through coupled operation ofbi- and multi-valent or storage-connected consumers, substantial flexibility contributions in its wake.Given the vast potential of offshore wind, it can play a crucial role in scenarios with considerable sector interaction,helping to meet the high electricity demand and offering an alternative for onshore wind which is being increasinglysubjected to social acceptance issues. With that in mind, it is important to acknowledge the fact that offshore windfarms require transmission systems with high investment costs to connect their generation to the onshore marketareas. Of similar importance is the growing challenge of balancing fluctuations between market areas with higherrenewable penetration, both on- and offshore. Making sound investment decisions for offshore grids with theirtwofold connection function of integrating offshore wind generation and facilitating power trade between onshoremarket areas is therefore of great relevance. At the same time, competing onshore flexibility options (e.g. flexibleCHP, heat pumps, electric vehicles) have to be put in the balance when assessing offshore grid infrastructureoptions in long-term scenarios.MethodsTo investigate offshore grid investment decisions for the Northern Seas region in the proposed case study, a twostageapproach is applied.In a first step, a European energy scenario for 2050 is determined by running the SCOPE model which has beendeveloped at Fraunhofer IWES (Trost, 2017). Minimising system operation and investment costs, while at the sametime complying with a given carbon emission target covering all relevant sectors, this deterministic cross-sectoralgeneration expansion planning model is formulated as a linear program (LP) for a full year discretised into8760 consecutive hours. Capturing the flexibility introduced by the coupled operation of power, heat, and transportsectors in a multi-energy system with its various technology combinations is one of the main purposes of this model(Härtel and Sandau, 2017). All time series data related to meteorological information, e.g. wind and solarproduction, thermal and cooling loads, heat pump’s coefficient of performance, is based on COSMO-EU weathermodel data (Deutscher Wetterdienst, 2016). To ensure consistency along both grid planning stages, the same database for offshore wind generation data is used. This means that structural and spatial information of single offshorewind farms, based on (4C Offshore, 2017), is combined with site-specific wind generation profiles.In a second step, the resulting energy system scenario is used in a deterministic large-scale offshore grid expansionplanning model with a particular focus on capturing future onshore flexibility to compute the offshore gridinvestments. For computational reasons, this market-based grid planning model needs to reduce the spatialresolution by clustering the single offshore wind farms to so-called offshore wind hubs. Moreover, it covers allmajor European market areas while keeping the same optimisation horizon in hourly resolution as is used by theSCOPE model. Hence, the model requires aggregated modelling approaches for hydropower systems (Härtel andKorpås, 2017) and thermal power plants (integer clustering), as well as bi- or multi-valent sector couplingtechnologies, see (Härtel and Sandau, 2017). Based on the linear cost model presented in (Härtel et al., 2017), themodel also accounts for the important fixed cost components of offshore grid infrastructure, i.e. fixed converter andplatform costs. It is therefore formulated as a mixed-integer linear program (MILP). What is more, a newinvestment cost parameter set for VSC HVDC technology will be used which has been validated against realisedback-to-back, interconnector, and offshore wind connection projects. Despite the aggregation efforts, a noveldecentralised solution approach based on a proximal bundle method had to be developed to efficiently handle the hourly interactions of the key flexibility providers and the renewable generation when making investment decisionsin offshore grid infrastructure.ResultsFollowing the two-stage methodology, the obtained results will be twofold. First, a possible decarbonisationscenario for the European region in 2050 will be presented as a result of the SCOPE model. To be able to meet theadditional electricity demand for heat and transport sectors, this scenario will show a generation mix withconsiderable renewable capacities, i.e. on- and offshore wind as well as rooftop and utility-scale solar power. Leastcostcompliance with cross-sectoral carbon emission reductions will favour highly efficient and flexible technologycombinations such as electric vehicles, decentralised heat pumps, and multi-valent CHP systems. It is important tomention that these key flexibilities and interactions are taken into account by the second modelling stage. Moreover,the model will also give a carbon price as the emission budget is modelled as a hard constraint.Second, the large-scale offshore grid expansion planning model will be used to assess three offshore grid topologyparadigms facilitating the connection of offshore energy to the onshore market areas and the exchange betweenthem:1. Status quo, allowing radial offshore hub connections and no expansion on existing interconnector corridors,2. Business as usual, allowing radial offshore hub connections and expansion on existing interconnectorcorridors, and3. Meshed grid, allowing meshed offshore hub connections and expansion on existing interconnector corridors.For the highly decarbonised 2050 scenario, these paradigms will show different offshore grid investments and theircorresponding system operation cost. Because the geographical scope of the market-based offshore grid expansionplanning model covers all major European countries, the model results will indicate cost impacts for directly andindirectly connected market areas to an offshore grid in the Northern Seas. To exhibit the competing role of onshoreflexibility for integrated offshore transmission infrastructure, a sensitivity analysis with increased flexibility ofelectric vehicles is going to be presented.ConclusionsThe contribution will provide insights into a long-term energy scenario complying with cross-sectoraldecarbonisation goals and its consequences for offshore wind energy as well as (integrated) offshore gridinfrastructure. As the main implication, the results will show that achieving ambitious carbon emission reductionsacross all energy sectors can enable offshore wind and offshore grid infrastructure to significantly contribute to afuture energy system. However, the role of and necessity for increased power trade facilitated by integrated offshoregrids in the Northern Seas exhibit a large dependency on onshore flexibility developments introduced by increasedenergy sector interaction.
机译:概述 为了符合宏伟的气候目标,例如根据《巴黎协定》, 当今能源系统的脱碳是不可避免的。由于目前热力和运输业仍然强劲 依靠化石燃料,这种长期的转变不能仅限于传统的电力部门(Mancarella等, 2016)。根据当前的部署和预测,未来的多能源系统将主要基于 风力和太阳能发电,以通过以下方式为所有相关能源部门供应和脱碳: 电力技术和燃料。尽管额外的跨部门用电需求将尤其明显 未来的电力系统具有更高的可再生能源发电能力,它还可以通过以下方式带来以下优势: 双价和多价或与存储连接的使用者,因此具有极大的灵活性。 鉴于海上风电的巨大潜力,它可以在部门之间存在大量互动的情况下发挥关键作用, 帮助满足高电力需求并为陆上风提供替代方案,而陆上风的替代方案正在日益增多 受到社会认可的问题。考虑到这一点,重要的是要承认一个事实,即海上风能 农场需要具有高投资成本的输电系统才能将其发电与陆上市场相连 地区。同样重要的是,平衡市场区域与较高市场区域之间的波动所面临的挑战越来越大。 国内外的可再生能源普及率。利用其决策权,为海上电网制定合理的投资决策 整合海上风力发电并促进陆上电力交易的双重连接功能 因此,市场领域具有重大意义。同时,竞争在岸灵活性选项(例如, 在评估海上电网基础设施时,必须将热电联产,热泵,电动汽车)放在天平上 长期方案中的选择。 方法 在拟议的案例研究中,为了调查北海地区的海上电网投资决策,该研究分为两个阶段 方法被应用。 第一步,通过运行SCOPE模型确定2050年的欧洲能源情景 由Fraunhofer IWES开发(Trost,2017年)。同时最大程度地减少系统运营和投资成本 确定性跨部门的时间要符合涵盖所有相关部门的给定碳排放目标 发电量扩展计划模型被制定为一个线性计划(LP),全年离散化为 连续8760小时。捕捉电力,热力和运输的耦合操作所带来的灵活性 具有各种技术组合的多能源系统中的各个部门是此模型的主要目的之一 (Härtel和Sandau,2017)。与气象信息有关的所有时间序列数据,例如风能和太阳能 生产,热负荷和冷负荷,热泵的性能系数基于COSMO-EU天气 模型数据(Deutscher Wetterdienst,2016)。为了确保两个网格规划阶段的一致性,相同的数据 使用海上风力发电数据的基础。这意味着单个近海的结构和空间信息 基于(4C Offshore,2017)的风力发电场,结合了特定地点的风力发电概况。 第二步,将确定的能源系统方案用于确定性的大规模海上电网扩张中 计划模型,特别着重于捕获未来的陆上灵活性以计算海上网格 投资。出于计算原因,此基于市场的网格规划模型需要减少空间 通过将单个海上风电场聚集到所谓的海上风电枢纽来解决问题。而且,它涵盖了所有 欧洲主要市场区域,同时保持与 范围模型。因此,该模型需要针对水电系统的汇总建模方法(Härtel和 Korpås,2017年)和火力发电厂(整数聚类),以及二价或多价行业耦合 技术,请参阅(Härteland Sandau,2017)。根据(Härtelet al。,2017)中介绍的线性成本模型, 该模型还说明了海上电网基础设施的重要固定成本组成部分,即固定换流站和 平台成本。因此,它被公式化为混合整数线性程序(MILP)。更重要的是,新的 将使用针对VSC HVDC技术的投资成本参数集,该参数集已针对实际实现进行了验证 背对背,互连器和海上风电连接项目。尽管进行了汇总工作, 一本小说 在制定投资决策时,必须开发基于近端捆绑方法的分散解决方案方法,以有效处理关键灵活性提供者与可再生能源发电的每小时互动 在海上电网基础设施中。 结果 按照两阶段方法,获得的结果将是双重的。首先,可能的脱碳 作为SCOPE模型的结果,将介绍2050年欧洲地区的情景。为了能够满足 供热和运输部门的电力需求增加,这种情况将显示 大量可再生能源,即陆上和海上风能以及屋顶和公用事业规模的太阳能。最低费用 遵守跨部门的碳减排将有利于高效和灵活的技术 组合,例如电动汽车,分散式热泵和多价CHP系统。重要的是要 提到第二个建模阶段已考虑了这些关键的灵活性和交互作用。而且, 该模型还将给出碳价格,因为将排放预算建模为硬约束。 其次,将使用大规模的海上网格扩展规划模型来评估三种海上网格拓扑 促进海上能源与陆上市场区域之间的联系以及相互之间的交换的范式 他们: 1.现状,允许径向的海上集线器连接,并且在现有的互连走廊上不扩展, 2.照常营业,允许径向海上集线器连接和现有互连器上的扩展 走廊,和 3.网状网格,允许网状海上集线器连接并在现有互连走廊上扩展。 对于高度脱碳的2050年情景,这些范例将显示不同的海上电网投资及其 相应的系统运行成本。因为以市场为基础的离岸网格扩大了地理范围 规划模型涵盖了所有主要的欧洲国家,模型结果将表明直接和间接产生的成本影响 将市场区域间接连接到北海的海上网格。展现陆上的竞争优势 集成式海上传输基础设施的灵活性,灵敏度分析以及更高的灵活性 电动汽车将被展示。 结论 该贡献将提供对符合跨部门的长期能源情景的见解 脱碳目标及其对海上风能以及(整合的)海上电网的影响 基础设施。作为主要暗示,结果将表明实现雄心勃勃的碳减排 跨所有能源领域的业务,可以使海上风电和海上电网基础设施极大地有助于 未来的能源系统。但是,海上一体化的发展促进了电力贸易的作用和必要性 北海的网格显示出对陆上灵活性发展的极大依赖,而陆上网格的发展是由于海洋生物量的增加而引起的。 能源部门的互动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号