首页> 外文会议>Lasers in Material Processing >Industrial aspects of precision machining with co
【24h】

Industrial aspects of precision machining with co

机译:精密加工的工业方面

获取原文

摘要

Abstract: The applications of conventional infrared lasers running cw or quasi-sw for drilling, cutting and shaping are limited in the precision achievable due to the long interaction time which leads to heat affected zones. The necessity to use a gas jet to blow the molten material out of the cut kerf will damage fragile workpieces like thin foils. Short laser pulses of sufficient intensity remove the material directly by evaporation and minimize the amount of heat transferred into the solid. Classical infrared laser sources generate a shielding air plasma within some ns at power densities above some 10$+7$/W/cm$+2$/. The optical breakdown threshold value in air can be shifted to higher intensities by using visible light as well as reducing the focal diameter. An alternative way is to shorten the pulse duration to less than 10 ps that a plasma is generated only after the pulse. Thus, the material removal process begins after the deposition of the pulse energy into the material. But such short pulses will generate a pressure wave due to the sudden thermal expansion and can damage or destroy microscopic components. For industrial production the productivity is a further aspect. Hence, a certain mean power is required in order to obtain the desired production rate. Considering the above aspects, copper vapor lasers (CVLs) with ns pulse duration are well suited for precision machining of metals and ceramics. Processing with CVLs is an advantage in that its wavelength is highly absorbed by metallic targets and the probability for the optical breakdown in air is low. CVLs in an oscillator-amplifier-setup incorporate diffraction limited beam quality and high average power. The present paper outlines the potential of the CVL for the industrial use regarding high processing speed and precision. Under these aspects the limiting mechanisms on the material removal process and the necessary processing strategies for scaling up the productivity are shown. The relevant laser parameters for increasing the working speed and the relationship to the achievable precision are given. The design aspects of a copper vapor laser system with high mean output power and repetition rate are outlined. To conclude, several typical machining tasks, e.g. cutting of green foils, drilling of scimmer holes for thermal analysis are presented.!3
机译:摘要:由于连续时间长,会导致热影响区,因此传统的连续或准连续运行的红外激光在钻孔,切割和整形中的应用受到限制,其可达到的精度受到限制。必须使用气体喷射器将熔融材料吹出切缝,这会损坏易碎的工件,例如薄箔。足够强度的短激光脉冲会通过蒸发直接去除材料,并使传递到固体中的热量最小化。经典的红外激光源在功率密度高于10 $ + 7 $ / W / cm $ + 2 $ /的情况下,会在ns内产生一个屏蔽的空气等离子体。通过使用可见光并减小焦距,可以将空气中的光学击穿阈值移到更高的强度。另一种方法是将脉冲持续时间缩短到小于10 ps,以使仅在脉冲之后才产生等离子体。因此,材料去除过程在将脉冲能量沉积到材料中之后开始。但是,这种短脉冲会由于突然的热膨胀而产生压力波,并可能损坏或破坏微观组件。对于工业生产,生产率是另一方面。因此,为了获得期望的生产率,需要一定的平均功率。考虑到上述方面,具有ns脉冲持续时间的铜蒸气激光器(CVL)非常适合金属和陶瓷的精密加工。用CVL进行加工的优点在于,其波长被金属靶标高度吸收,并且在空气中发生光学击穿的可能性很低。振荡器-放大器设置中的CVL结合了衍射受限的光束质量和高平均功率。本文概述了CVL在高处理速度和高精度方面的工业应用潜力。在这些方面,显示了材料去除过程的限制机制和扩大生产率的必要处理策略。给出了提高工作速度的相关激光参数以及与可达到的精度的关系。概述了具有高平均输出功率和重复率的铜蒸气激光系统的设计方面。总而言之,有几种典型的加工任务,例如:介绍了切割生箔,钻孔以进行热分析的方法!! 3

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号