首页> 外文会议>AIAA SciTech forum and exposition >Attachment Field Hole Cutting for Chimera Overset Meshes: Boundary Element and Radial Basis Function Approaches
【24h】

Attachment Field Hole Cutting for Chimera Overset Meshes: Boundary Element and Radial Basis Function Approaches

机译:嵌合体重叠网格的附着场孔切割:边界元和径向基函数方法

获取原文

摘要

Numerical solution methods using overset meshes have found wide use for decades, offering flexibility in handling complex geometries but requiring the process of domain assembly in order to achieve a valid mesh system. One aspect of this process is hole cutting, in which elements are selectively removed from the mesh to avoid intersection with solid bodies and excessive overlap, and which is accomplished through hole cutting methods such as direct cut and implicit hole cutting methods. Recent works by Liu et al. [1-3] introduced a new class of hole cutting methods, called elliptic hole cutting, that incorporate some aspects of both direct cut and implicit hole cutting methods and additionally use component-mesh-associated pseudo-temperature fields to aid the process. The fields are computed as finite element solutions to Poisson equations on each of the component meshes with source terms reflecting the relative mesh quality or priority of the component meshes. While improvements over implicit hole cutting methods were demonstrated, the elliptic hole cutting method still requires expensive mesh search operations. In this work, we propose new related methods, based on boundary element solution of Laplace's equation and radial basis function interpolation. Our approaches follow the basic idea of the elliptic hole cutting method but remove some of its limitations. In particular, our methods eliminate the use of the volume mesh in the computation of attachment fields, using only selected surface nodes, and avoids the necessity of a direct cut method to supply artificial boundary condition in the elliptic hole cutting method. We compare the relative merits of our proposed approaches and present an application to a multi-component airfoil geometry.
机译:使用覆盖网格的数值求解方法已经发现了数十年的广泛应用,为处理复杂的几何体提供了灵活性,但是需要域组装过程才能实现有效的网格系统。此过程的一个方面是打孔,其中从网格中有选择地删除元素以避免与实体相交和过度重叠,这是通过打孔方法(例如直接切割和隐式打孔方法)实现的。 Liu等人的最新著作。 [1-3]介绍了一种称为椭圆孔切割的新型孔切割方法,该方法结合了直接切割和隐式孔切割方法的某些方面,另外还使用了与网格关联的伪温度场来辅助该过程。这些字段被计算为每个零部件网格上泊松方程的有限元解,其源项反映了零部件网格的相对网格质量或优先级。尽管已证明了对隐式孔切割方法的改进,但椭圆形孔切割方法仍需要昂贵的网格搜索操作。在这项工作中,我们基于拉普拉斯方程的边界元解和径向基函数插值,提出了新的相关方法。我们的方法遵循椭圆孔切割方法的基本思想,但消除了它的一些局限性。尤其是,我们的方法消除了仅在选定曲面节点的情况下在连接场的计算中使用体积网格的麻烦,并且避免了使用直接切割方法在椭圆孔切割方法中提供人工边界条件的必要性。我们比较了我们提出的方法的相对优点,并提出了在多部件翼型几何中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号