首页> 外文会议>AIAA SciTech forum and exposition >Toward Transition Modeling in a Hypersonic Boundary Layer at Flight Conditions
【24h】

Toward Transition Modeling in a Hypersonic Boundary Layer at Flight Conditions

机译:飞行条件下高超音速边界层的过渡建模

获取原文

摘要

An accurate physics-based transition prediction method integrated with computational fluid dynamics (CFD) solvers is pursued for hypersonic boundary layer flows over slender hypersonic vehicles at flight conditions. The geometry and flow conditions are selected to match relevant trajectory locations from the ascent phase of the HIFiRE-1 flight experiment, namely, a 7-degree half-angle cone with 2.5 mm nose radius, freestream Mach numbers in the range of 3.8 - 5.5 and freestream unit Reynolds numbers in the range of 3.3 × 10~6 - 21.4 × 10~6 m~(-1). Earlier research had shown that the onset of transition during the HIFiRE-1 flight experiment correlated with an amplification factor of N ≈ 13.5 for the planar Mack modes. However, to incorporate the N-factor correlations into a CFD code, we investigate surrogate models for disturbance amplification that avoid the direct computation of stability characteristics. A commonly used approach for low-speed flows is based on an a priori database of stability characteristics for locally similar profiles. However, the results presented in this paper demonstrate that the application of this approach to hypersonic boundary layers over blunt spherical nose-tip cones leads to large, unacceptable errors in the predictions of amplification factors, mainly due to its failure in accounting for the effects of the entropy layer on the boundary-layer profiles along the length of the model. We propose and demonstrate an alternate approach that employs the stability computations for a canonical set of blunt cone configurations to train a physics-informed convolutional neural network model that is shown to provide substantially improved transition predictions for hypersonic flow configurations with entropy-layer effects. Furthermore, the excellent performance of the neural network model is also confirmed for cone configurations with nose radius and half-angle values that do not correspond to those used to build the database. Finally, the convolutional neural network model is shown to outperform the linear stability calculations for underresolved basic states.
机译:针对在飞行条件下细长超音速飞行器上的超音速边界层流动,寻求一种与计算流体力学(CFD)求解器集成的基于物理学的精确过渡预测方法。从HIFiRE-1飞行实验的上升阶段选择几何形状和流动条件以匹配相关的轨迹位置,即,鼻子半径为2.5 mm的7度半角锥,自由流马赫数在3.8-5.5的范围内自由流雷诺数在3.3×10〜6-21.4×10〜6 m〜(-1)范围内。较早的研究表明,在HIFiRE-1飞行实验中,转变的开始与平面Mack模式的放大因子N≈13.5有关。但是,要将N因子相关性纳入CFD代码中,我们研究了用于扰动放大的替代模型,该模型避免了直接计算稳定性特征。低速流的常用方法是基于先验数据库的局部相似轮廓的稳定性特征。但是,本文提出的结果表明,这种方法在钝球形鼻尖锥上的高超声速边界层上的应用会导致放大因子预测中的大误差,这是不可接受的,这主要是由于该方法未能考虑到增强作用的影响。沿模型长度的边界层轮廓上的熵层。我们提出并证明了一种替代方法,该方法对一组平凡的圆锥构形采用规范化的稳定性计算,以训练物理学上已知的卷积神经网络模型,该模型显示可为具有熵层效应的高超音速流动构形提供实质性的改进过渡预测。此外,对于锥度半径和半角值与构建数据库所用的锥度和半角值不符的圆锥配置,神经网络模型的出色性能也得到了证实。最后,卷积神经网络模型表现出优于未解决的基本状态的线性稳定性计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号