首页> 外文会议>AIAA SciTech Forum and Exposition >Modelling of induction heating of thermoplastic composites using microscopic level modeling
【24h】

Modelling of induction heating of thermoplastic composites using microscopic level modeling

机译:使用微观水平模型对热塑性复合材料的感应加热进行建模

获取原文

摘要

Simulation and analysis of Electromagnetic (EM) induction heating of continuous conductive fiber based composite materials is used to (in)validate a set of hypotheses on the physics dominating the heating process. The behavior of carbon fibers with and without surrounding polymer in an alternating electromagnetic field was studied at a microscopic level using the ANSYS Maxwell software code using solid loss to quantify heat generation in the composite material. To limit the number of elements, fibers were modelled with a polyhedron cross-section instead of a circular cross-section. The simulations indicate that samples with fibers oriented in layers of 0 and 90 orientation yield a substantial higher solid loss than layers of fibers oriented in the 0 orientation only. The solid loss in both cases is however not sufficient to explain the level of heating observed in practice. Filling the volumes between fibers filled polymer results in far greater solid loss than samples with fibers having no medium in between the fibers, at equal fiber volume fraction. This effect is stronger with increasing fiber volume fraction. Also, in these cases no direct electrical contact between fibers was modelled. Data for the conductivity of the polymer was derived from laboratory testing. The lab tests showed relatively low finite resistance values for the plies in the transverse direction, indicating that the polymer in a composite should not be considered an isolator at the thickness levels found of the polymer layer surrounding each fiber in a properly consolidated laminate. Analytical equations were derived and compared with simulation results to verify these findings. The simulations seem to justify the conclusion that heating of thermoplastic composites in an alternating magnetic field rely on currents through the polymer without the need for contacting carbon fibers. The carbon fibers are required though to create the electromagnetic force that induces the current through the polymer. It is the product of current density squared times the resistivity of the polymer that determines the heating.
机译:基于连续导电纤维的复合材料的电磁感应加热的仿真和分析用于(使)关于加热过程的物理学假设不成立(无效)。使用ANSYS Maxwell软件代码在微观水平上研究了具有和不具有周围聚合物的碳纤维在交变电磁场中的行为,该代码使用固体损耗来量化复合材料中的热量生成。为了限制元素的数量,使用多面体横截面而不是圆形横截面对纤维进行建模。模拟表明,纤维取向为0和90的层的样品比仅取向为0的纤维层产生的固体损失高得多。然而,在两种情况下的固体损失不足以解释实践中观察到的加热水平。在纤维体积分数相等的情况下,填充纤维填充的聚合物之间的体积所产生的固体损失比纤维之间没有介质的样品的固体损失要大得多。随着纤维体积分数的增加,该效果更强。同样,在这些情况下,没有对光纤之间的直接电接触进行建模。聚合物电导率的数据来自实验室测试。实验室测试表明,在横向方向上,帘布层的有限电阻值相对较低,这表明在适当固结的层压板中,围绕每根纤维的聚合物层的厚度水平,复合材料中的聚合物不应视为隔离剂。导出了解析方程,并将其与仿真结果进行比较以验证这些发现。该模拟似乎可以证明以下结论的合理性:在交变磁场中加热热塑性复合材料时,不需要通过接触碳纤维,就取决于流过聚合物的电流。尽管需要碳纤维来产生电磁力,该电磁力感应出通过聚合物的电流。决定加热的是电流密度平方乘以聚合物电阻率的乘积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号