首页> 外文会议>AIAA SciTech Forum and Exposition >Toughening of Boron Carbide Composites with Hierarchical Microstructuring
【24h】

Toughening of Boron Carbide Composites with Hierarchical Microstructuring

机译:分层微结构对碳化硼复合材料的增韧

获取原文

摘要

Boron carbide (B_4C) possesses a unique combination of properties including high hardness, low density, wear and corrosion resistance, thermal stability, high neutron absorption, and semi-conductivity, making it a potential candidate for aerospace, nuclear and other applications that involves extreme environment. Its current application however, is limited by its brittleness originated from strong covalent bonding. To toughen boron carbide, past studies implemented toughening mechanisms such as crack deflection and bridging by reinforcement particles, whiskers, and fibers. Recent studies have demonstrated novel deformation mechanisms triggered in nanocrystalline B_4C which can potentially enhance its fracture resistance by grain boundary sliding accompanied by nano-pore compression/collapse. In this study, B4C composites with hierarchical microstructure features are fabricated using field assisted sintering (FAST) to combine multiple toughening mechanisms for further fracture toughness enhancement. 'Soft' carbon phases in the form of graphite platelets are introduced to promote crack deflection and introduce energy dissipation mechanism by delamination. And sub-micron titanium diboride (TiB_2) particles are added to promote crack deflection, bridging, and micro-crack toughening. The fabricated B_4C composites exhibit hierarchical microstructure features including micron and sub-micron sized B_4C grains, graphite platelets, and TiB_2 reinforcements. Fracture toughness enhancements up to 4.16, 4.67, and 4.65 MPa-m~(1/2) (from 2.96 MPa-m"2) are achieved for B_4C composites with graphite platelets addition (microano B_4C), with TiB_2 formation (micro B_4C-TiB_2), and with both graphite and TiB_2 addition (microano B_4C-TiB_2) respectively. While addition of a second phase can usually lead to hardness degradation, the fabricated microano B4C-TiB_2 composites exhibit high fracture toughness while retaining high hardness (31.88 GPa) despite the lower hardness of formed graphite platelets and TiB_2 particles. The results demonstrated the ability to obtain high fracture toughness without degradation of other physical properties through multiple toughening mechanisms enabled by the hierarchical microstructure design. When extended to other material systems including silicon carbide and aluminum oxide, this toughening strategy can be applied for matrix toughening and work alongside fiber-reinforcements to achieve further toughness enhancement.
机译:碳化硼(B_4C)具有独特的性能组合,包括高硬度,低密度,耐磨和耐腐蚀,热稳定性,高中子吸收性和半导电性,使其成为航空,核能和其他涉及极端应用的潜在候选物环境。然而,其当前的应用受到源自强共价键的脆性的限制。为了使碳化硼增韧,过去的研究实施了增韧机制,例如裂纹偏转和由增强颗粒,晶须和纤维形成的桥接。最近的研究表明,在纳米晶B_4C中引发了新的变形机制,该机制可能通过晶界滑动伴随纳米孔压缩/塌陷而潜在地增强其抗断裂性。在这项研究中,使用场辅助烧结(FAST)来制造具有分层微观结构特征的B4C复合材料,以结合多种增韧机制来进一步提高断裂韧性。引入石墨薄片形式的“软”碳相,以促进裂纹变形并通过分层引入能量耗散机制。然后添加亚微米二硼化钛(TiB_2)颗粒,以促进裂纹变形,桥接和微裂纹增韧。制成的B_4C复合材料表现出分级的微观结构特征,包括微米和亚微米级的B_4C晶粒,石墨片和TiB_2增强材料。对于添加了石墨薄片(微米/纳米B_4C)且形成TiB_2(微米)的B_4C复合材料,断裂韧性提高到4.16、4.67和4.65 MPa-m〜(1/2)(从2.96 MPa-m“ 2开始)。 B_4C-TiB_2)以及分别添加石墨和TiB_2(微米/纳米B_4C-TiB_2)。虽然添加第二相通常会导致硬度降低,但所制备的微米/纳米B4C-TiB_2复合材料在保持韧性的同时显示出高断裂韧性尽管所形成的石墨片和TiB_2颗粒的硬度较低,但仍具有较高的硬度(31.88 GPa)。结果表明,通过分级微观结构设计实现的多种增韧机制,能够获得高断裂韧性而不会降低其他物理性能。包括碳化硅和氧化铝的体系,这种增韧策略可用于基质增韧,并与纤维增强并用,以实现更高的韧性扬扬。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号