首页> 外文会议>Medical Imaging Conference >Simulation of Hepatic Arteries and Synthesis of 2D Fluoroscopic Images for Interventional Imaging Studies
【24h】

Simulation of Hepatic Arteries and Synthesis of 2D Fluoroscopic Images for Interventional Imaging Studies

机译:肝动脉模拟和2D荧光透视图像合成,以进行介入成像研究

获取原文

摘要

Training of deep learning-based segmentation algorithms requires large datasets of annotated images. Obtaining large clinical datasets, particularly for interventional imaging, is difficult and annotating vessels manually in the images is very time-consuming. Simulated images can be used to supplement clinical datasets. We developed a technique for the simulation of realistic, anatomically- and physiologically-motivated hepatic artery trees and subsequent synthesis of fluoroscopic images. The proposed approach creates a network of main feeding arteries for each of the eight liver segments as defined by the Couinaud classification system. A constrained constructive optimization based approach was then used to connect a set of randomly generated endpoints within each segment to the corresponding feeding artery. Vessel curvature was created using cubic splines and the generated vasculature was inserted into the digital XCAT phantom. The simulated 2D fluoroscopic images were generated using ray tracing and included focal spot blur, detector blur and Poisson noise. The length ratio (1.1 ± 1.7) and two parameters from Murray's law, branching angles (7.9 ± 7.7° mean absolute difference from Murray's law) and radius ratio (1.0 ± 0.1) of the generated vasculature were in accordance with values reported in literature (1.3, Murray's law applied to branching angles, and 1.0 respectively). Simulated vasculature included main branches for each of the eight Couinaud segments, where 87% of all connected endpoints terminated in the same segment. Simulated 2D projection images were analyzed using a vessel phantom study with contrast-enhanced tubes (0.305-3.353 mm diameter). The normalized root mean squared difference between the measured and simulated vessel profiles averaged 3.5%. In conclusion, the proposed method provides realistic simulated fluoroscopic images of the liver vasculature and could prove useful for the training of machine learning based algorithms for vessel segmentation.
机译:训练基于深度学习的分割算法需要带注释的图像的大数据集。获取大型临床数据集,尤其是用于介入成像的临床数据集非常困难,并且在图像中手动标注血管非常耗时。模拟图像可用于补充临床数据集。我们开发了一种模拟现实的,解剖上和生理上驱动的肝动脉树并随后合成荧光透视图像的技术。拟议的方法为库尼(Couinaud)分类系统定义的八个肝脏节段中的每个节段创建了一个主要的供血动脉网络。然后使用基于约束的构造优化的方法将每个段内的一组随机生成的端点连接到相应的进料动脉。使用三次样条创建血管曲率,并将生成的脉管系统插入数字XCAT体模中。模拟的2D荧光透视图像是使用光线跟踪生成的,包括焦点模糊,检测器模糊和泊松噪声。产生的脉管系统的长度比(1.1±1.7)和穆雷定律的两个参数,分支角(与穆雷定律的绝对差为7.9±7.7°)和半径比(1.0±0.1)与文献报道的值一致( 1.3,穆雷定律分别适用于分支角和1.0)。模拟的脉管系统包括八个Couinaud区段中每个区段的主要分支,其中所有相连端点的87%终止于同一区段。使用带有对比增强管(直径为0.305-3.353毫米)的血管模型研究分析了模拟的2D投影图像。测量和模拟的血管轮廓之间的归一化均方根差平均为3.5%。总之,所提出的方法提供了真实的模拟的肝血管荧光透视图像,可以证明对于训练基于机器学习的血管分割算法很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号