首页> 外文会议>AIAA SciTech Forum and Exposition >A Formal Evaluation of a Consistent Averaging Procedure for Solving the Time-Dependent Navier Stokes Equations Numerically
【24h】

A Formal Evaluation of a Consistent Averaging Procedure for Solving the Time-Dependent Navier Stokes Equations Numerically

机译:对数值求解时间依赖的Navier Stokes方程的一致平均程序的正式评估

获取原文

摘要

Numerical solutions of compressible turbulent flow remains a challenge. Because of the wide range of temporal and spatial length scales, different mathematical techniques have been implemented to resolve these complex flows. Large Eddy Simulation (LES) is one of the most promising techniques; however, some understanding of the expected turbulence must be known a priory and computed using sub-grid scale models. Unfortunately, there is no guarantee that the selected model will effectively capture the fine-scale turbulence. Mathematical handling of discontinuities such as shock waves typically increase the complexity and difficulty of compressible flow computations. To alleviate this problem, Essentially Non-Oscillatory (ENO) schemes equipped with Riemann solvers are widely used. The numerical algorithm presented in this work represents a new approach based on a consistent averaging procedure that solves an integral form of the Navier Stokes Equations. This method leads to a set of differential-algebraic equations that are solved numerically using spatial averaging. We present several computations demonstrating the flow physics capturing capabilities of the new scheme. We investigate 2D solutions of the stratified Kelvin-Helmholtz instability shear layer, the Taylor-Green Vortex, and the Riemann problem. This is our first attempt to provide a thorough study of inviscid and viscous flows. Our primary goal is to quantify the dissipative behavior, resolution characteristics, and shock-capturing capabilities of the proposed scheme. To this end, we qualitatively compared the numerical solution to reference data. Quantitatively, we use statistical techniques such as measurement of the kinetic energy spectrum and the conservation of total energy and enstrophy in the flow.
机译:可压缩湍流的数值解仍然是一个挑战。由于时间和空间长度尺度范围广,已经实现了不同的数学技术来解决这些复杂流。大涡模拟(LES)是最有前途的技术之一;然而,必须通过子网格刻度模型来了解对预期湍流的一些理解。不幸的是,无法保证所选模型将有效地捕获微尺度的湍流。诸如冲击波等不连续性的数学处理通常会增加可压缩流量计算的复杂性和难度。为了缓解这个问题,基本上使用具有riemann溶剂的非振荡(ENO)方案被广泛使用。本作品中提出的数值算法表示基于一致的平均过程,该方法解决了Navier Stokes方程的积分形式。该方法导致一组差分代数方程,其使用空间平均来数量地解决。我们提出了几种计算捕获新方案的流量物理学的计算。我们调查分层的Kelvin-Helmholtz不稳定剪切层,泰勒 - 绿色涡旋和riemann问题的2D解决方案。这是我们第一次尝试提供对粘性和粘性流动的彻底研究。我们的主要目标是量化拟议计划的耗散行为,分辨率特征和冲击捕获能力。为此,我们定性地将数字解决方案与参考数据进行了比较。定量地,我们使用统计技术,例如测量动力学能谱和流量的总能量和敌对的守恒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号