首页> 外文会议>AIAA SciTech Forum and Exposition >Large Eddy Simulation of Flow and Heat Transfer over Forward-Facing Steps with Upstream Injection
【24h】

Large Eddy Simulation of Flow and Heat Transfer over Forward-Facing Steps with Upstream Injection

机译:具有上游注射的前部步骤的流量和传热的大涡流模拟

获取原文

摘要

Forward-facing step flows occur in many kinds of applications such as wind power generation at the top of abrupt changes in landscape, in electronics cooling for airflow over chips, and in gas turbine engines where individual components may be misaligned due to differential thermal expansion or assembly mismatch. Unlike the more commonly studied backward facing step flow, forward-facing step flows feature two recirculation zones, one at the base of the step, and one on top of the step. High amounts of turbulence and convective heat transfer occur in the recirculation regions. In some applications (particularly the hot components in a gas turbine engine), leakage flow is injected at the base of the forward step to provide cool air and prevent melting downstream of the step, but also can locally increase the heat transfer coefficient by the disturbance of the injection. In this study, the turbulent convective heat transfer over a forward-facing step with upstream injection flow was studied using scale-resolving computational simulations. The continuity, Navier-Stokes, and energy equations were solved numerically and large eddy simulation (LES) with the Wall-Adapting Local-Eddy Viscosity (WALE) subgrid scale model was used to resolve the turbulence. By adding upstream injection, the separation and reattachment lengths around the step increased by about 20% for an injection velocity ratio (injection to mainstream) of 0.25, and by 50% for an injection velocity ratio of 0.5. Injection increased the turbulence downstream of the forward-facing step, resulting in higher heat transfer coefficients downstream of the step. These effects further increased with increasing injection velocity ratio.
机译:面向前表面流动发生在许多类型的应用中,例如横向突然变化的风力发电,在芯片上的气流的电子冷却中,并且在燃气涡轮发动机中,由于差动热膨胀,各个部件可能未对准的情况下装配不匹配。与越常见的后方面对面流动不同,正面对面的步骤流动具有两个再循环区域,一个在步骤的基础上,一个在步骤之上。在再循环区域中发生高量的湍流和对流传热。在一些应用(特别是燃气轮机发动机中的热部件)中,在前进步骤的底部注入泄漏流动以提供冷空气并防止在步骤的下游熔化,但也可以通过干扰局部增加热传递系数注射。在该研究中,使用尺度解析计算模拟研究了具有上游进样流程的前部面向上游步骤的湍流对流热传递。连续性,Navier-Stokes和能量方程在数值上解决,并且使用墙壁适配局部涡流(WALE)底板刻度模型的大型涡流模拟(LES)用于解决湍流。通过加入上游注射,围绕上游喷射的分离和重新连接长度为注射速度比(注射到主流)的速度增加约20%,注射速度比为0.5的50%。注射增加了前朝步骤下游的湍流,导致步骤下游的较高的传热系数。随着注射速度比增加,这些效果进一步增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号