首页> 外文会议>AIAA SciTech Forum and Exposition >Pterodactyl: System Analysis of an Asymmetric and Symmetric Deployable Entry Vehicle for Precision Targeting Using Flaps
【24h】

Pterodactyl: System Analysis of an Asymmetric and Symmetric Deployable Entry Vehicle for Precision Targeting Using Flaps

机译:PterodAdyl:使用襟翼精确靶向的不对称和对称可部署进入车辆的系统分析

获取原文

摘要

The current state-of-the-art for entry control systems is rooted in heritage entry, descent, and landing (EDL) systems such as Apollo and Mars Science Laboratory. These rigid entry vehicles used Reaction Control System (RCS) thrusters, installed within the backshell, to achieve the desired bank command profile [1]. In recent years, NASA has invested in game changing entry vehicle technologies, including the Deployable Entry Vehicles (DEV) concept. DE Vs are radically different from rigid entry vehicles because DEVs have no backshell, making unavailable the typical locations for installation of RCS thrusters and associated fuel lines. In order to overcome this challenge, aerodynamic control systems are being considered as the primary means of entry precision targeting for DEVs. These control systems have been shown to enable precision targeting for DEV's and have the potential to save propellant mass and payload volume. In this work, the Pterodactyl project compares the mechanical feasibility and targeting performance of an aerodynamic control system (flaps) installed on two variants of a mechanically deployed DEV technology called the Adaptable, Deployable, Entry and Placement Technology (ADEPT). The two DEV variants are as follows; the Pterodactyl Baseline Vehicle Ⅰ (PBV-Ⅰ), which has an asymmetric aeroshell and PBV-Ⅱ which has a symmetric aeroshell. The performance of each vehicle configuration is discussed based on specific parameters: mechanical feasibility, range capability, flap usage, and robustness to aerodynamic roll dispersions. This paper details the advantages and challenges of PBV-Ⅰ and PBV-Ⅱ to understand their breadth of capability to command bank and/or alpha/beta guidance profiles.
机译:目前的最先进的进入控制系统源于遗产入境,下降和降落(EDL)系统,例如Apollo和Mars Science实验室。这些刚性入口车辆使用了安装在后壳内的反应控制系统(RCS)推进器,以实现所需的银行命令配置文件[1]。近年来,美国宇航局已投资于博弈变化入门车辆技术,包括可部署的入口车辆(DEV)概念。 DE VS与刚性入口车辆无关,因为DEVS没有后壳,不可用典型的位置用于安装RCS推进器和相关的燃料管线。为了克服这一挑战,空气动力学控制系统被认为是针对DEVS的进入精度的主要方法。已显示这些控制系统以实现DEV的精度,并且具有节省推进剂质量和有效载荷体积的可能性。在这项工作中,PterodAdyl项目比较了安装在机械部署的开发技术的两个变体上的空气动力控制系统(襟翼)的机械可行性和定位性能,称为适应性,可部署,进入和放置技术(Adept)。两种开发变体如下;翼状丁基基线载体Ⅰ(PBV-Ⅰ),具有对称气溶细胞的不对称气溶细胞和PBV-Ⅱ。基于特定参数讨论每个车辆配置的性能:机械可行性,范围能力,襟翼使用和对空气动力辊分散体的鲁棒性。本文详细介绍了PBV-Ⅰ和PBV-Ⅱ的优缺点,了解他们对指挥银行和/或α/ Beta指导型材的能力的广度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号