首页> 外文会议>AIAA SciTech Forum and Exposition >Automated Segmentation of In Situ X-ray Microtomography of Progressive Damage in Advanced Composites via Deep Learning
【24h】

Automated Segmentation of In Situ X-ray Microtomography of Progressive Damage in Advanced Composites via Deep Learning

机译:深度学习自动分割原位X射线显微镜逐步损坏逐步损坏

获取原文

摘要

We present here the development and evaluation of a deep learning (artificial intelligence)-based computer vision machine to automate segmentation of multiclass progressive matrix damage across micro and mesoscales in aerospace-grade advanced composite laminates visualized in 4D via nondestructive in situ mechanical testing coupled with synchrotron radiation computed tomography (SRCT). Leveraging tens of thousands of manually-/human-annotated SRCT tomograms (i.e., 2D virtual cross-sectional slices) encompassing two different aerospace-grade advanced composite laminate systems (standard-thickness-ply and thin-ply) that were SRCT-scanned while under progressive tensile loading, we teach a fully convolutional neural network machine to segment complex polymer matrix damage mechanisms according to their host ply, replacing~10 hours of trained human labor per scan segmentation (~2000 tomograms per scan) with negligible time to configure the trained machine data-processing pipeline. Evaluating qualitatively and quantitatively the segmented tomograms independently in 2D, as well as collectively in 3D scans, we demonstrate good agreement between the state-of-the-art human-based region growing (semi-manual) method and machine-based segmentation results, summarized by test set macro-averages of the following common classification/segmentation performance metrics: 79% for F_1 score (harmonic mean of precision and recall) and 67% for intersection over union (IoU) score. Moreover, 2D inspection of segmented damage within tomograms reveals that F_1 and IoU scores actually underrate machine performance due to a nontrivial degree of human (used as ground truth) segmentation error, as the machine is found to regularly exceed the human (resulting in F_1 and IoU score penalties) by discovering new damage instances, augmenting existing diffuse segmentations, and extending segmentations to image artifact-prone specimen edges. Consequently, we discover that deep learning-based segmentation successfully and efficiently characterizes sparse (<<1% of scan volume), extremely complex 3D damage states within SRCT datasets, resolving an intractable computer vision challenge (as viewed through the lens of traditionally programmed automation) and establishing these high-throughput tools as promising candidates to accelerate understanding of basic structure-property relationships in traditional and next-generation advanced composite materials.
机译:我们在这里展示了对计算机视觉机的深度学习(人工智能)的开发和评估,以自动在4D中通过非破坏性机械测试在4D中通过非破坏机械测试自动化微型和Mesoscales跨微型和Mesoscales造成的多标配基质损伤的分割。同步辐射计算断层扫描(SRCT)。利用数万手动/人类注释的SRCT断层图像(即2D虚拟横截面切片)包括两种不同的航空级先进复合层压材料(标准厚度和薄层),它们是SRCT扫描的在逐步拉伸负荷下,我们教导一个完全卷积的神经网络机以根据其宿主的宿主划分复杂的聚合物基质损伤机制,替换每次扫描分割的训练的人工劳动力(〜2000个断层图像),可以忽略不计的时间来配置培训的机器数据处理管道。在2D中独立评估定性和定量的分段断层照片,以及在3D扫描中集体,我们展示了最先进的人类地区生长(半手册)方法和基于机器的分割结果之间的良好一致性,通过测试集的宏观分类来概述以下常见分类/分割性能度量:F_1得分(精度和召回的谐波平均值)和67%的交叉口(iou)得分为67%。此外,由于机器经常超过人类(导致F_1,因此,2D检查折断层损坏的分段损坏揭示了F_1和IOU的分数实际低估了机器性能,因为发现机器经常超过人(导致F_1和通过发现新的损害实例,增强现有漫射分割,并将分割扩展到图像伪影标本边缘来获得惩罚。因此,我们发现基于深度学习的分割成功且有效地表征了SRCT数据集中极为复杂的3D损害状态,解决了难以应变的计算机视觉挑战(通过传统上编程的自动化镜头查看)并将这些高吞吐工具建立为承诺的候选人,以加速传统和下一代先进复合材料中的基本结构性关系的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号