首页> 外文会议>ASME International Conference on Energy Sustainability;ASME Heat Transfer Conference >TEMPERATURE-DEPENDENT WETTABILITY OF WATER ON A NICKEL SURFACE AT PRESSURIZED CONDITION: A MOLECULAR DYNAMICS STUDY
【24h】

TEMPERATURE-DEPENDENT WETTABILITY OF WATER ON A NICKEL SURFACE AT PRESSURIZED CONDITION: A MOLECULAR DYNAMICS STUDY

机译:加压条件下水在镍表面上的温度依赖性可湿性:分子动力学研究

获取原文
获取外文期刊封面目录资料

摘要

Temperature-dependent wettability of water droplets on a metal surface in a pressurized environment is of great theoretical and practical significance. In this paper, molecular dynamic simulation is used to study this problem by relating the temperature-dependent apparent contact angles to the changes in solid-liquid and solid-vapor interfacial free energies and hydrogen bonds in the nano-sized water droplets with increasing the temperature. The temperature range of interest is set from 298 K to 538 K in a 20 K interval under a constant pressure of 7 MPa. The results show that the contact angle in general decreases with raising the temperature and decreasing trend can be divided into two sections with different slopes. The contact angle drops slowly when the temperature is below 458 K as a critical point. Beyond this point, the contact angle shows a much steeper decrease. The difference between solid-vapor and solid-liquid interfacial free energies is found to decrease slightly with temperature. Combining with that the surface tension drops with increasing the temperature, a decreasing trend of the contact angle is expected according to the Young's equation. As the temperature increases, the number and average energy of the hydrogen bonds both decrease, and the hydrogen bonds tend to aggregate at the bottom of the nano-droplets.
机译:在加压环境中,金属表面上水滴的温度依赖性润湿性具有重要的理论和实践意义。在本文中,分子动力学模拟通过将温度相关的视在接触角与温度升高时纳米尺寸水滴中固-液和固-气界面自由能和氢键的变化联系起来来研究此问题。 。在7 MPa的恒定压力下,以20 K的间隔将目标温度范围设置为298 K至538K。结果表明,接触角一般随温度的升高而减小,减小的趋势可分为斜率不同的两个部分。当温度低于458 K作为临界点时,接触角会缓慢下降。超过此点,接触角显示出陡峭的减小。发现固-气界面自由能和固-液界面自由能之间的差异随温度而略有减小。结合表面张力随着温度的升高而下降,根据杨氏方程,可以预期接触角的减小趋势。随着温度升高,氢键的数量和平均能量均降低,并且氢键倾向于聚集在纳米液滴的底部。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号